Ceph at the Flatiron Institute

Andras Pataki

September 17, 2019

Flatiron Institute

- www.flatironinstitute.org
- Internal research division of the Simons Foundation
- Mission: to advance scientific research through computational methods, including data analysis, modeling and simulation
- Organized into centers
 - Center for Computational Astrophysics (CCA)
 - Center for Computational Biology (CCB)
 - Center for Computational Quantum Chemistry (CCQ)
 - Center for Computational Mathematics (CCM)
 - Scientific Computing Core (SCC)
- Young institution extremely fast growth

Flatiron Institute

Data of a variety of sorts ...

- Large genomics datasets from sequencers
- Astrophysics simulation outputs

Variety of computational styles ...

- Embarrassingly parallel: genomics pipelines
- Loosely coupled MPI: protein folding, some quantum chemistry codes
- Tightly coupled MPI: astro sims

Flatiron Institute

Computational resources

- About 40k cores of computing
 - 20k in New York (Manhattan and Brookhaven National Labs)
 - 20k at the San Diego Supercomputer Center (SDSC)
- \approx 200 GPUs
- Almost 30PB of raw space in Ceph storage (Manhattan)
- Also GPFS and Lustre storage

A reliable, autonomous, distributed object store comprised of self-healing, self-managing, intelligent storage nodos

Recovery - Ceph vs. traditional RAID

RAID recovery

- Drive failure rebuild requires reading other drives in full
- Secondary drive failures more likely

Declustered Placement

Declustered Placement - Single disk failure

Declustered Placement - Single disk failure

Declustered Placement - Dual disk failure

History of Ceph at Flatiron

Before Ceph

- Used small HDFS installation before served a dozen or so users
 - Not POSIX compliant
- Evaluated alternatives: Lustre, GlusterFS, GPFS, Ceph

Initial Ceph setup

- Flatiron CephFS birthday: 4/10/2015
- Hammer (8th) release
- Small scale half a dozen Dell T630 servers
 - 18 x 6TB spinning drives per node, no flash
 - collocated management processes (mon, mds)

Ceph - Scaling out

Research group grew - Ceph scaled well

- Space oriented design
- Using Dell DSS-7500 building blocks
 - 45 large capacity spinning drives (8TB, lately 12TB)
 - Two high performance NVMe drives for journaling (P3700, Optane)
 - Dual 40Gbps Ethernet connectivity
- Separate metadata storage 1U R630 nodes with NVMe storage
- Separate monitor nodes

Current setup:

- 42 DSS-7500 nodes, about 30PB raw space
- 5 R640 monitor nodes
- 6 R630 metadata storage nodes

Flatiron Ceph Implementation

Dense storage nodes from Dell (DSS-7500)

• 90 x 8TB 7200rpm SAS drives, 2 x 28 core Broadwell servers in 4U dual 40Gbps ethernet

Flatiron Ceph Implementation

Flatiron Ceph Implementation

- 36 DSS-7500 servers
- 64 client nodes with 10GbE
- Triple replicated pool
- Sequential write/read

- 36 DSS-7500 servers
- 64 client nodes with 10GbE
- 6+3 EC profile pool
- Sequential write/read

- 36 DSS-7500 servers
- 96 client nodes with 10GbE
- Triple replicated pool
- Sequential write/read

- 36 DSS-7500 servers
- 96 client nodes with 10GbF
- 6+3 EC profile pool
- Sequential write/read

Flatiron Ceph Data Placement

Unique challenge of Flatiron Data Center

• In basement - on an island a few feet above sea level

Distributed Ceph storage nodes around the building

- Configured data placement using the flexibility of CRUSH
- No failure of a single area (room) will result in a loss of data
- Building is divided into 3 regions
 Loss of one region (such as the basement) results in no data loss
- It has a theoretical overhead of 50 percent

Encoding

- Triple replication used for metadata and small files
- Erasure coding (6+3) used for large files
- Actual overhead very close to theoretical

Lessons learned - over years

Hardware

- Drives some NAS grade drives corrupt data silently
 - Ceph detected and warned us about data corruption
- Networking packet drops on 40Gbps interfaces
- NVMEs/SSDs
 - Consumer grade devices lower performance than spinning drives

Software

- Ceph versions some more stable than others
 - We started with Hammer (0.94.x), then Jewel (10.2.x), Luminous (12.2.x)
 - Recently upgraded to Mimic (13.2.6)
 - Upgrading to Nautilus (14.2.x) in 2019
- Kernel versions issues with CentOS kernels
 - Running custom built kernel on Ceph storage nodes
- Mellanox firmware/software stack

Failures and Resilience

Typical failures:

- Single drive failures, read/write errors Ceph handles automatically
- Sometimes node crashes mostly hardware reasons
 - Manual intervention no automatic recovery
- DIMM replacements
- Rarely NVMe failure, SAS controller failure

Availability:

- With one exception we had no unplanned outages on the DSS-7500 setup
- We moved Ceph data to our new building without interrupting availability
- We have done upgrades of ceph without a shutdown

Real Disaster Recovery:

- Tenant above one of our floors left the water running over a weekend
- One of the data closets got flooded with a 90 drive ceph node in it
- ullet Water + electricity \longrightarrow trouble
- However we lost no data

Flooded ceph node + electrical fire

Flatiron Customizations

Usage monitoring

- Real time usage monitoring is a challenge with most distributed FS's
- We run a modified Ceph client collects real time usage statistics
- Makes it possible to identify problematic jobs
 - ullet examples: opening thousands of files a second, doing small I/O

Custom patches for issues/enhancements

- Every so often testing pre-release features, bug fixes, enhancements
- Open source development model makes bug fix cycle much shorter

Erasure coding conversion

- All files written as triple replicated originally
- Periodic parallel file system scan
 - ullet identifies eligible files and converts them to EC 6+3
- \bullet EC files: <5% by count, >95% by space
- Talked to developers about moving files across pools in the MDS

Flatiron Customizations

Ceph current performance

Columns	Refresh Auto-refresh:		FF Last updated: 2019-09-09 10:48:22		Search:	
host	▲ user	† file	open (files/s)	read (MB/s)	write (MB/s)	total (MB/s)
	Locations	000	0.007	0.000	0.000	0.000
	a		1.057	478.136	17440.979	17919.114
	a		0.000	0.000	0.001	0.001
	C		0.000	0.000	0.000	0.000
	C		0.004	0.000	0.063	0.063
	C	and the last	0.104	0.001	41.660	41.661
	C		2.196	280.640	0.000	280.640
	d .		0.000	0.000	0.001	0.001
	e -		920.015	0.267	0.860	1.126
	g		0.003	1024.881	0.000	1024.881
	jl		0.083	0.000	19.306	19.306
	j:		0.001	0.000	6.317	6.317
	k		0.003	0.000	0.043	0.043
	k		0.427	0.019	0.000	0.019
	n		0.122	0.000	0.000	0.000
	n		3.701	0.000	60.887	60.887
	II-		0.000	0.000	0.000	0.000
	S		0.000	88.117	0.000	88.117
	ν	-	0.002	0.000	0.000	0.000
	v		0.000	0.000	0.001	0.001
	y		0.000	0.000	0.000	0.000
otal	total	total	927.742	1872.060	17570.118	19442.177

Current Challenges

Small file performance

- Use kernel client
 - Stability
 - Kernel version dependence
 - Usage monitoring instrumentation
- Ceph Octopus planned improvements small file creation/removal
 - Testament to flexible design of Ceph

Future ceph building blocks

- DSS-7500 is a bit disk heavy has not seen any architecture updates
- Flash storage node
 - Especially when small file performance improves
 - Ceph has a project (Crimson) OSD optimized for low latency flash

Longer term

HSM like functionality - moving old data to tape or colder storage

Questions