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Why LHC, why jets

Big jet data by ATLAS & CMS

– colliding protons on protons at E ≈ 13000×mp

– most interactions qq̄, gg → qq̄, gg

– quarks/gluon visible as jets σpp→jj × L ≈ 108fb× 80/fb ≈ 1010 events

⇒ It’s big data
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Why LHC, why jets

Big jet data by ATLAS & CMS

– colliding protons on protons at E ≈ 13000×mp

– most interactions qq̄, gg → qq̄, gg

– quarks/gluon visible as jets σpp→jj × L ≈ 108fb× 80/fb ≈ 1010 events

⇒ It’s big data

Interesting physics in jets

– re-summed perturbative QFT prediction for QCD splittings

– jets as decay products
67% W → jj 70% Z → jj 60% H → jj 67% t → jjj 60% τ → j ...

– new physics in ‘dark showers’ [Jennifer Thompson’s talk]

⇒ It’s interesting



Because it is Fun

Tilman Plehn

1990s Jets

2000s Taggers

2010s Multi-variate

2020s Jet images

DeepTop

Moving on

Why LHC, why jets

Big jet data by ATLAS & CMS

– colliding protons on protons at E ≈ 13000×mp

– most interactions qq̄, gg → qq̄, gg

– quarks/gluon visible as jets σpp→jj × L ≈ 108fb× 80/fb ≈ 1010 events

⇒ It’s big data

Interesting physics in jets

– re-summed perturbative QFT prediction for QCD splittings

– jets as decay products
67% W → jj 70% Z → jj 60% H → jj 67% t → jjj 60% τ → j ...

– new physics in ‘dark showers’ [Jennifer Thompson’s talk]

⇒ It’s interesting

LHC simulations

– QCD simulation: Pythia, Sherpa, Herwig

– fast detector simulation: Delphes

– excellent agreement with data

⇒ We can simulate it
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Inside jets

Jets and machine learning from 1990s to 2020s

1991 NN-based quark-gluon tagger [visionary: Lönnblad, Peterson, Rögnvaldsson]
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Inside jets

Jets and machine learning from 1990s to 2020s

1991 NN-based quark-gluon tagger [visionary: Lönnblad, Peterson, Rögnvaldsson]

1994 jet-algo W /top-tagger for heavy Higgs [Seymour]

2008 jet-algo Higgs tagger [Butterworth, Davison, Rubin, Salam; Kribs, Martin, Spannowsky]

2008 jet-algo top tagger [Kaplan, Rehermann, Schwartz, Tweedie]

2009 jet-algo HEPTopTagger [TP, Salam, Spannowsky; 1st user Gregor Kasieczka]

· · ·
2009 template top tagger [Almeida, Lee, Perez, Sterman, Sung, Virzi]

2011 Shower Deconstruction [Soper, Spannowsky]

2015 Multi-variate HEPTopTagger [Kasieczka, TP, Schell, Strebler, Salam]

· · ·
2014 image recognition W -tagger [Cogan, Kagan, Strass, Schwartzman]

2015 jet images [de Oliveira, Kagan), Mackey, Nachman, Schwartzman]

2017 image recognition top tagger [Kasieczka, Plehn, Russell, Schell]

2017 language recognition W -tagger [Louppe, Cho, Becot, Cranmer]

2017 4-vector-based top tagger [Butter, Kasieczka, Plehn, Russel]

· · ·
2018 jet autoencoder [Heinel, Kasieczka, Plehn, Thompson; Shi etal]
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Jet-level analyses (1990s)

Jets as analysis objects

– partonic predictions from QCD⇔ jets describing partons in reality

– infrared safety crucial to compare with perturbative QCD rates

– data-to-data analyses more flexible

– data-to-simulation analyses similarly free?

QCD recombination algorithms [FASTJET]

– define jet–jet and jet–beam distances [exclusive with resolution ycut]

kT yij =
∆Rij

R
min
(
pT ,i , pT ,j

)
yiB = pT ,i

C/A yij =
∆Rij

R
yiB = 1

anti-kT yij =
∆Rij

R
min
(

p−1
T ,i , p−1

T ,j

)
yiB = p−1

T ,i .

– (1) find minimum ymin = minij (yij , yiB)

(2a) if ymin = yij merge subjets i and j , back to (1)
(2b) if ymin = yiB remove i from subjets, go to (1)

⇒ clustering history usable?
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Fat jet taggers (2000s)

For instance: boosted tops

– hadronic decays vs QCD splittings

– perfectly described by perturbative QCD

– labelled sample: semileptonic t t̄ events

⇒ substructure playground 1
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Fat jet taggers (2000s)

For instance: boosted tops

– hadronic decays vs QCD splittings

– perfectly described by perturbative QCD

– labelled sample: semileptonic t t̄ events

⇒ substructure playground 1
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Simple top tagging [BDRS; TP, Salam, Spannowsky, Takeuchi]

1– C/A fat jet with pT > 200 GeV

2– filtering defining 3-5 decay jets

3– top mass window m123 = [150, 200] GeV

4– A-shaped mass plane cuts probing mW

⇒ not rocket science, but experimental break-through
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Multi-variate subjet physics (2010s)

OptimalR and N-Subjettiness [Kasieczka, TP, Salam, Schell, Strebler]

– multivariate analysis old idea [Lonnblad, Peterson, Rognvaldsson]

HEPTopTaggerv2 to keep up with shower deconstruction [Soper, Spannowsky]

– optimal fat jet size Ropt [large to decay jets, small to avoid combinatorics, compute from kinematics]

|m123−m(Rmax)
123 | < 0.2 m(Rmax)

123 ⇒ Ropt

– add N-subjettiness [Thaler, van Tilburg]

– {m123, fW ,Ropt − R(calc)
opt , τj , τ

(filt)
j }
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Multi-variate subjet physics (2010s)

OptimalR and N-Subjettiness [Kasieczka, TP, Salam, Schell, Strebler]

– multivariate analysis old idea [Lonnblad, Peterson, Rognvaldsson]

HEPTopTaggerv2 to keep up with shower deconstruction [Soper, Spannowsky]

– optimal fat jet size Ropt [large to decay jets, small to avoid combinatorics, compute from kinematics]

|m123−m(Rmax)
123 | < 0.2 m(Rmax)

123 ⇒ Ropt

– add N-subjettiness [Thaler, van Tilburg]

– {m123, fW ,Ropt − R(calc)
opt , τj , τ

(filt)
j }

Fat jet and top kinematics

– FSR major problem for Z ′ search

– tag and reconstruction in each other’s way

⇒ {...,mtt , pT ,t ,m
(filt)
jj , p(filt)

T ,j }
⇒ expected performance increase
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Jet images (2020s)

‘Deep learning’ = modern architectures on low-level observables

– wavelet transformation [Rentala, Shepherd, Tait; Monk]

– W -tagging with image recognition [Cogan etal, Oliveira etal, Baldi etal]

– impact of shower? [Barnard etal]

– combining calorimeter and tracking? [Komiske etal]

– understanding additional information? [Datta & Larkosky]

– link to infrared safety? [Choi, Lee, Perelstein; Friday speakers]

-2 -1.5 -1 -0.5 0 0.5 1.0 1.5 2
η

-100

-75

-50

-25

0

25

50

75

100

φ

101

102

C
al

or
im

et
er
E

[G
eV

]



Because it is Fun

Tilman Plehn

1990s Jets

2000s Taggers

2010s Multi-variate

2020s Jet images

DeepTop

Moving on

Jet images (2020s)

‘Deep learning’ = modern architectures on low-level observables

– wavelet transformation [Rentala, Shepherd, Tait; Monk]

– W -tagging with image recognition [Cogan etal, Oliveira etal, Baldi etal]

– impact of shower? [Barnard etal]

– combining calorimeter and tracking? [Komiske etal]

– understanding additional information? [Datta & Larkosky]

– link to infrared safety? [Choi, Lee, Perelstein; Friday speakers]

Convolutional network [Kasieczka, TP, Russell, Schell; Macaluso, Shih]
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– run on 2-D jet images [pT = 350, ..., 450 GeV]

– colored image as input

– binning through calorimeter resolution [∆η = 0.1 vs ∆φ = 5◦ ]
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Inside DeepTop

Benchmarking image-based top tagger [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

– 2+2 convolutional layers
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Inside DeepTop

Benchmarking image-based top tagger [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

– 2+2 convolutional layers

– 3 fully connected layers
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Inside DeepTop

Benchmarking image-based top tagger [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

– 2+2 convolutional layers

– 3 fully connected layers

– Pearson input-output correlation [pixel x vs label y ]

rij ≈
∑
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(
xij − x̄ij

)
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Inside DeepTop

Benchmarking image-based top tagger [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

– 2+2 convolutional layers

– 3 fully connected layers

– Pearson input-output correlation [pixel x vs label y ]

rij ≈
∑

images

(
xij − x̄ij

)
(y − ȳ)

– comparison to MotherOfTaggers BDT

⇒ understandable performance gain
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Inside DeepTop

Benchmarking image-based top tagger [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

– 2+2 convolutional layers

– 3 fully connected layers

– Pearson input-output correlation [pixel x vs label y ]

rij ≈
∑

images

(
xij − x̄ij

)
(y − ȳ)

– comparison to MotherOfTaggers BDT

⇒ understandable performance gain

DeepTop minimal

Training
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Inside DeepTop

Benchmarking image-based top tagger [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

– 2+2 convolutional layers

– 3 fully connected layers

– Pearson input-output correlation [pixel x vs label y ]

rij ≈
∑

images

(
xij − x̄ij

)
(y − ȳ)

– comparison to MotherOfTaggers BDT

⇒ understandable performance gain

Typical reaction: ‘Fuck you, you fucking machine’

– full control for supervised learning
easy checks for correctly identified signal/background events

– MC truth vs MotherOfTaggers vs DeepTop

fat jet mass
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Inside DeepTop

Benchmarking image-based top tagger [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

– 2+2 convolutional layers

– 3 fully connected layers

– Pearson input-output correlation [pixel x vs label y ]

rij ≈
∑

images

(
xij − x̄ij

)
(y − ȳ)

– comparison to MotherOfTaggers BDT

⇒ understandable performance gain

Typical reaction: ‘Fuck you, you fucking machine’

– full control for supervised learning
easy checks for correctly identified signal/background events

– MC truth vs MotherOfTaggers vs DeepTop

fat jet mass

N-subjettiness
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Inside DeepTop

Benchmarking image-based top tagger [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

– 2+2 convolutional layers

– 3 fully connected layers

– Pearson input-output correlation [pixel x vs label y ]

rij ≈
∑

images

(
xij − x̄ij

)
(y − ȳ)

– comparison to MotherOfTaggers BDT

⇒ understandable performance gain

Typical reaction: ‘Fuck you, you fucking machine’

– full control for supervised learning
easy checks for correctly identified signal/background events

– MC truth vs MotherOfTaggers vs DeepTop

fat jet mass

N-subjettiness

transverse momenta

⇒ it works and we know why
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DeepTopLoLa

Our version of graph network [Butter, Kasieczka, TP, Russell; many more by now]

– sparsely filled picture: graph CNN

– physics objects from calorimeter and tracker

– distance measure known from e&m
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DeepTopLoLa

Our version of graph network [Butter, Kasieczka, TP, Russell; many more by now]

– sparsely filled picture: graph CNN

– physics objects from calorimeter and tracker

– distance measure known from e&m

Inspired by jet algorithm — combination layer

– input 4-vectors

(kµ,i ) =

k0,1 k0,2 · · · k0,N
k1,1 k1,2 · · · k1,N
k2,1 k2,2 · · · k2,N
k3,1 k3,2 · · · k3,N


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DeepTopLoLa

Our version of graph network [Butter, Kasieczka, TP, Russell; many more by now]

– sparsely filled picture: graph CNN

– physics objects from calorimeter and tracker

– distance measure known from e&m

Inspired by jet algorithm — combination layer

– input 4-vectors

– on-shell conditions for top tag
k̃2
µ,1 = (kµ,1 + kµ,2 + kµ,3)2 !

= m2
t

k̃2
µ,2 = (kµ,1 + kµ,2)2 !

= m2
W
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DeepTopLoLa

Our version of graph network [Butter, Kasieczka, TP, Russell; many more by now]

– sparsely filled picture: graph CNN

– physics objects from calorimeter and tracker

– distance measure known from e&m

Inspired by jet algorithm — combination layer

– input 4-vectors

– on-shell conditions for top tag
– combined 4-vectors

kµ,i
CoLa−→ k̃µ,j = kµ,i Cij C =


1 0 · · · 0 C1,N+2 · · · C1,M

0 1
... C2,N+2 · · · C2,M

...
...

. . . 0
...

...
0 0 · · · 1 CN,N+2 · · · CN,M


– after combination of input 4-vectors

original momenta ki
M − N trainable linear combinations [M-N=15]

⇒ physics step, easy to interpret
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DeepTopLoLa

Our version of graph network [Butter, Kasieczka, TP, Russell; many more by now]

– sparsely filled picture: graph CNN

– physics objects from calorimeter and tracker

– distance measure known from e&m

Inspired by jet algorithm — combination layer

– combined 4-vectors kµ,i
CoLa−→ k̃µ,j = kµ,i Cij

Inspired by Jackson — Lorentz layer

– DNN on Lorentz scalars

k̃j
LoLa−→ k̂j =


m2(k̃j )

pT (k̃j )

w (E)
jm E(k̃m)

w (d)
jm d2

jm


– learn Minkowski metric

g =diag(0.99±0.02,

−1.01±0.01,−1.01±0.02,−0.99±0.02)
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Moving on

Simple questions

– ML4Jets 2017: what architecture?

– ML4Jets 2018: top tagging study
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Moving on

Simple questions

– ML4Jets 2017: what architecture?

– ML4Jets 2018: top tagging study

⇒ lots of architectures work
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Moving on

Simple questions

– ML4Jets 2017: what architecture?

– ML4Jets 2018: top tagging study

⇒ lots of architectures work

More questions

– what about uncertainties?

– how stable are taggers in experimental reality?

– can we go beyond fully supervised learning?

– how do we go beyond jets?

– is classification all we can use ML for?

– are there analyses only ML will allow us to do?

– what is the particle nature of dark matter?

etc
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When reality hits

ML-Life is not always nice to us [Kasieczka, Kiefer, TP, Thompson]

– Quark-gluon tagging a problem since 1991

– quark jets typical for resonance searches
gluon jets typical as dark matter recoil

– BDT/NN on high-level variables established

⇒ deep-learning advantage gone after detector simulation, REALLY???
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Getting seriously inspired

Anomaly search only trained on background [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

– established ML concept: autoencoder

– reconstruct typical QCD jet image from many QCD jets

– reduce weights in central layer
compress information on ‘typical’

– search for outliers hard to describe

– benchmark on top jets, search for Higgs or dark showers
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Getting seriously inspired

Anomaly search only trained on background [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

– established ML concept: autoencoder

– reconstruct typical QCD jet image from many QCD jets

– reduce weights in central layer
compress information on ‘typical’

– search for outliers hard to describe

– benchmark on top jets, search for Higgs or dark showers

De-correlate background shaping

– established concept: adversary
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Getting seriously inspired

Anomaly search only trained on background [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

– established ML concept: autoencoder

– reconstruct typical QCD jet image from many QCD jets

– reduce weights in central layer
compress information on ‘typical’

– search for outliers hard to describe

– benchmark on top jets, search for Higgs or dark showers

De-correlate background shaping

– established concept: adversary

– atypical QCD jets typially with large jet mass
remove jet mass from network training
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Because it is Fun

Tilman Plehn

1990s Jets

2000s Taggers

2010s Multi-variate

2020s Jet images

DeepTop

Moving on

The future

Times are moving fast...

...jets are containers for subjet physics [was 1990s]

...deterministic taggers are established/old/boring [was 2000s]

...multi-variate taggers are an intermediate step [dying with the 2010s]

...imagine recognition is a starting point [will be 2020s]

...deep learning is not just classification

Join the fun!
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