Electroweak corrections for triboson production

Marek Schönherr

CERN

17 Oct 2018

Content

1 Introduction and current status

2 NLO EW corrections

3 Results for LHC EW WG

Introduction and current status

1 Introduction and current status

2 NLO EW corrections

3 Results for LHC EW WG

4 Conclusion

Triboson production

- triboson production clean testbed to test EW quartic couplings
- contribs from

signature	process	resonance structure
0 SFOS	e $^-\mu^+\mu^+ar{ u}_{ m e} u_\mu u_\mu$	WWW
1 SFOS	$e^-e^+\mu^+ar{ u}_e u_e u_\mu$	WWW + WZZ
	$e^-e^+\mu^+ar u_\mu u_\mu u_\mu$	WZZ
	$e^- e^+ \mu^+ ar u_ au u_ au u_\mu$	WZZ
2 SFOS	$e^-e^+e^+ar{ u}_e u_e u_e$	WWW + WZZ
	$e^- e^+ e^+ ar{ u}_{\mu/ au} u_{\mu/ au} u_e$	WZZ

and $e \leftrightarrow \mu$

- exchange $+ \leftrightarrow -$ for $W^+W^-W^-$ production
- main backgrounds: $t\bar{t}W$, $tWW \Rightarrow$ apply jet veto WZ in 1, 2 SFOS \Rightarrow req. large p_{T} , $m_{\ell\ell}^{sFOS} \not\approx m_Z$

Current status

NLO QCD

- on-shell fixed-order
 Binoth et.al. arXiv:0804.0350
 off-shell fixed-order
 Campanario et.al. arXiv:0809.0790
 → available in aut. tools (MG5_aMC, SHERPA+OPENLOOPS/RECOLA)
- on-shell matched to parton showers in SHERPA, multijet merged WWW + 0, 1j Höche et.al. arXiv:1403.7516
- off-shell matched to parton showers should be available in automated tools (MG5_aMC, SHERPA+OPENLOOPS/RECOLA)

NLO EW

on-shell known for some time

Yong-Bai et.al. arXiv:1605.00554 Dittmaier, Huss, Knippen arXiv:1705.03722

off-shell recently computed

MS arXiv:1806.00307

no matching to parton showers available yet

NLO QCD for off-shell production

Campanario et.al. arXiv:0809.0790

- QCD correction driven by additional jet activity \rightarrow strong observable dependence
- jet veto ($p_{\mathrm{T}}^{\mathrm{cut}}=50\,\mathrm{GeV}$) reduces size and phase space dependence

NLO QCD for off-shell production

Campanario et.al. arXiv:0809.0790

- QCD correction driven by additional jet activity \rightarrow strong observable dependence
- jet veto ($p_{\mathrm{T}}^{\mathrm{cut}}=50\,\mathrm{GeV}$) reduces size and phase space dependence

NLO QCD+EW corrections in on-shell production

Dittmaier, Huss, Knippen arXiv:1705.03722

- corrections w/o jet veto
- QCD corrections \approx 70%, slight observable dependence
- γ -induced EW corrections large and observable dependent
 - \rightarrow large accidental cancellations with EW corrections in $q\bar{q}\text{-}\mathsf{channel}$

On-shell production

- only triple resonant diagrams
- strong interference between diagrams in which different numbers of gauge bosons couple to quark line
- some kinematic width effects recoverable through BW-shape improved spin-correlated decays
- threshold at 3 m_W

u

đ

Off-shell production

- triple, double and single resonant diagrams
- much richer internal structure, contains on-shell WWW as part of triple resonant subset
- includes WZ diagrams with $Z
 ightarrow 2\ell 2
 u$
- thresholds given by acceptance cuts
- importance of single/double resonant topologies already seen in *WW*

Biedermann et.al. arXiv:1605.03419

ā

 $m_{\ell\ell\ell\nu\nu\nu} = m_{WWW}$

- no unique *W* identifaction possible in off-shell calculation, even in MC truth, due to occurrence of SF pairs
- no cross section below 3 m_W in on-shell approximation
- at large *m*_{WWW} masses large interference with other resonance structures
- \rightarrow cross checked with off-shell calculation projected on triple W resonant subset of diagrams

 on-shell approximation reasonable for MET, but fails for m_{ℓℓℓ} for similar reasons as for m_{ℓℓℓννν}

- on-shell approximation reasonable for moderate lepton p_{T}
- fails at low p_{T} due to off-shell effects
- fails at high $p_{\rm T}$ due to importance single and double resonant topologies

1 Introduction and current status

2 NLO EW corrections

3 Results for LHC EW WG

4 Conclusion

- at LO: triple and quartic gauge boson self-interactions
- at NLO EW: appearance of octagons, closed fermion loops, Higgs self-interactions, Yukawa couplings, etc
- genuine NLO EW 2 \rightarrow 6 calculation with 3 resonances

MS arXiv:1806.00307

• input parameters for the following calculations

$$\begin{array}{rcl} G_{\mu} &=& 1.16637 \times 10^{-5} \ {\rm GeV}^2 \\ m_W &=& 80.385 \ {\rm GeV} & & \Gamma_W &=& 2.0897 \ {\rm GeV} \\ m_Z &=& 91.1876 \ {\rm GeV} & & \Gamma_Z &=& 2.4955 \ {\rm GeV} \\ m_h &=& 125.0 \ {\rm GeV} & & \Gamma_h &=& 0.00407 \ {\rm GeV} \\ m_t &=& 173.2 \ {\rm GeV} & & \Gamma_t &=& 1.3394 \ {\rm GeV} \end{array}$$

- EW parameter renormalisation in G_{μ} -scheme
- scale choice: $\mu = \sum m_{T,i}^W$ ambiguous in all channels, also not well motivated scale choice for WZZ channels (or WZZ phase space regions)
- EW corrections largely scale independent: choose $\mu_R = \mu_F = 3 m_W$
- use NNPDF31_nlo_as_0118_luxqed for reliable γPDF

MS arXiv:1806.00307

• work with dressed leptons with $\Delta R_{
m dress}=0.1$

Selection	Cut	Value	
general	$ ho_{ m T}(\ell)$	[20 GeV, ∞)	
	y(ℓ)	[-2.5, 2.5]	lepton
	$\Delta R(\ell,\ell)$	$[0.2,\infty)$	ucceptunce
$\not\!\!p_{ m T}>$ 20 GeV	$\Delta \phi({p\!\!\!/}_{ m T},\ell\ell\ell)$	$[\frac{5}{6}\pi,\pi]$	jet veto
1, 2 SFOS	Øт	[50 GeV, ∞)	W/Z veto
	$m_{\ell\ell}^{ ext{sfos}}$	$[0,70{ m GeV}]\wedge [100{ m GeV},\infty)$	VVZ VELO

minimise ttW, tWW, WZ backgrounds

Triboson production

		inclusive		
	LO [fb]	δ_{EW}	$\delta^{\sf EW}_{q\bar{q}}$	$\delta^{\sf EW}_{q\gamma/\bar{q}\gamma}$
$\ell^-\ell^+\ell^+$	0.4209	-2.0 %	-5.2 %	3.2 %
e ⁻ e ⁺ e ⁺	0.0212	-3.4 %	-7.1%	3.6 %
$e^-e^+e^+ar{ u}_e u_e u_e$	0.0206	-3.4 %	-7.0 %	3.6 %
$e^-e^+e^+ar{ u}_{\mu/ au} u_{\mu/ au} u_e$	0.0006	-5.4 %	-9.5%	4.1 %
$e^-e^+\mu^+$	0.0938	-1.4%	-5.4 %	4.1 %
$e^-e^+\mu^+ar{ u}_e u_e u_\mu$	0.0924	-1.4%	-5.4%	4.1 %
$e^-e^+\mu^+ar{ u}_\mu u_\mu$	0.0007	-2.9 %	-6.1%	3.2 %
$e^-e^+\mu^+ar u_ au u_ au$	0.0007	-2.7 %	-6.2 %	3.5 %
$e^-\mu^+\mu^+$	0.0955	-2.2 %	-4.6 %	2.4 %
$e^-\mu^+\mu^+ar{ u}_e u_\mu u_\mu$	0.0955	-2.2 %	-4.6%	2.4 %

- large accidental and cut dependent cancellations of Sudadov-type neg. EW corrections and γ -induced pos. contribs w/ extra jet activity
- WWW channels receive smaller corrections than pure WZZ channels

Triboson production

	inclusive			
	LO [fb]	δ_{EW}	$\delta^{\sf EW}_{q\bar{q}}$	$\delta^{\text{EW}}_{q\gamma/\bar{q}\gamma}$
$\ell^-\ell^+\ell^+$	0.4209	-2.0 %	-5.2 %	3.2 %
$e^{-}e^{+}e^{+}$	0.0212	-3.4 %	-7.1%	3.6 %
$e^-e^+e^+ar{ u}_e u_e u_e$	0.0206	-3.4 %	-7.0 %	3.6 %
$e^-e^+e^+ar{ u}_{\mu/ au} u_{\mu/ au} u_e$	0.0006	-5.4%	-9.5%	4.1 %
$e^-e^+\mu^+$	0.0938	-1.4 %	-5.4%	4.1 %
$e^-e^+\mu^+ar{ u}_e u_e u_\mu$	0.0924	-1.4%	-5.4 %	4.1 %
$e^-e^+\mu^+ar{ u}_\mu u_\mu u_\mu$	0.0007	-2.9 %	-6.1%	3.2 %
$e^-e^+\mu^+ar u_ au u_ au$	0.0007	-2.7 %	-6.2%	3.5 %
$e^-\mu^+\mu^+$	0.0955	-2.2 %	-4.6 %	2.4 %
$e^-\mu^+\mu^+ar{ u}_e u_\mu u_\mu$	0.0955	-2.2 %	-4.6%	2.4 %

- large accidental and cut dependent cancellations of Sudadov-type neg. EW corrections and γ -induced pos. contribs w/ extra jet activity
- WWW channels receive smaller corrections than pure WZZ channels

....

Triboson production

	inclusive			
	LO [fb]	$\delta_{\rm EW}$	$\delta^{\sf EW}_{q\bar{q}}$	$\delta^{\text{EW}}_{q\gamma/\bar{q}\gamma}$
$\ell^-\ell^+\ell^+$	0.4209	-2.0 %	-5.2 %	3.2 %
<i>e</i> ⁻ <i>e</i> ⁺ <i>e</i> ⁺	0.0212	-3.4 %	-7.1%	3.6 %
$e^-e^+e^+ar{ u}_e u_e u_e$	0.0206	-3.4 %	-7.0 %	3.6 %
$e^-e^+e^+ar{ u}_{\mu/ au} u_{\mu/ au} u_e$	0.0006	-5.4 %	-9.5 %	4.1 %
$e^-e^+\mu^+$	0.0938	-1.4%	-5.4%	4.1 %
$e^-e^+\mu^+ar{ u}_e u_e u_\mu$	0.0924	-1.4%	-5.4 %	4.1 %
$e^-e^+\mu^+ar{ u}_\mu u_\mu u_\mu$	0.0007	-2.9%	-6.1%	3.2 %
$e^-e^+\mu^+ar u_ au u_ au$	0.0007	-2.7 %	-6.2 %	3.5 %
$e^-\mu^+\mu^+$	0.0955	-2.2%	-4.6 %	2.4 %
$e^-\mu^+\mu^+ar{ u}_e u_\mu u_\mu$	0.0955	-2.2 %	-4.6 %	2.4 %

- large accidental and cut dependent cancellations of Sudadov-type neg. EW corrections and γ-induced pos. contribs w/ extra jet activity
- WWW channels receive smaller corrections than pure WZZ channels

ш

Triboson production

MS arXiv:1806.00307

	$m(3\ell) > 500{ m GeV}$			
	LO [fb]	δ_{EW}	$\delta^{\sf EW}_{q\bar{q}}$	$\delta^{\sf EW}_{q\gamma/\bar{q}\gamma}$
$\ell^-\ell^+\ell^+$	0.0338	-7.7 %	-16.3%	8.6 %
$e^{-}e^{+}e^{+}$	0.0031	-10.1%	-18.3%	8.2 %
$e^-e^+e^+ar{ u}_e u_e u_e$	0.0029	-9.9%	-18.3%	8.3 %
$e^-e^+e^+ar{ u}_{\mu/ au} u_{\mu/ au} u_e$	0.0001	-13.4%	-19.8%	6.4 %
$e^-e^+\mu^+$	0.0081	-6.8%	-16.6%	9.8 %
$e^-e^+\mu^+ar{ u}_{ m e} u_{ m e} u_{\mu}$	0.0079	-6.5%	-16.5%	10.0 %
$e^-e^+\mu^+ar{ u}_\mu u_\mu u_\mu$	0.0001	-11.9%	-18.0%	6.1 %
$e^-e^+\mu^+ar u_ au u_\mu$	0.0001	-11.2%	-17.8%	6.6%
$e^-\mu^+\mu^+$	0.0057	-7.7 %	-14.8%	7.0 %
$e^-\mu^+\mu^+ar{ u}_e u_\mu u_\mu$	0.0057	-7.7%	-14.8%	7.0 %

- large accidental and cut dependent cancellations of Sudadov-type neg. EW corrections and γ -induced pos. contribs w/ extra jet activity
- WWW channels receive smaller corrections than pure WZZ channels

ш

Triboson production

MS arXiv:1806.00307

	$m(3\ell) > 500{ m GeV}$			
	LO [fb]	δ_{EW}	$\delta^{\sf EW}_{q\bar{q}}$	$\delta^{\text{EW}}_{q\gamma/\bar{q}\gamma}$
$\ell^-\ell^+\ell^+$	0.0338	-7.7 %	-16.3%	8.6 %
e ⁻ e ⁺ e ⁺	0.0031	-10.1%	-18.3%	8.2 %
$e^-e^+e^+ar{ u}_e u_e u_e$	0.0029	-9.9 <i>%</i>	-18.3%	8.3 %
$e^-e^+e^+ar{ u}_{\mu/ au} u_{\mu/ au} u_e$	0.0001	-13.4%	-19.8%	6.4 %
$e^-e^+\mu^+$	0.0081	-6.8%	-16.6%	9.8 %
$e^-e^+\mu^+ar{ u}_e u_e u_\mu$	0.0079	-6.5%	-16.5%	10.0 %
$e^-e^+\mu^+ar{ u}_\mu u_\mu u_\mu$	0.0001	-11.9%	-18.0%	6.1 %
$e^-e^+\mu^+ar u_ au u_ au$	0.0001	-11.2%	-17.8%	6.6%
$e^-\mu^+\mu^+$	0.0057	-7.7 %	-14.8%	7.0 %
$e^-\mu^+\mu^+ar{ u}_e u_\mu u_\mu$	0.0057	-7.7 %	-14.8%	7.0 %

- large accidental and cut dependent cancellations of Sudadov-type neg. EW corrections and γ -induced pos. contribs w/ extra jet activity
- WWW channels receive smaller corrections than pure WZZ channels

ш

Triboson production

MS arXiv:1806.00307

	$m(3\ell)>500{ m GeV}$			
	LO [fb]	δ_{EW}	$\delta^{\sf EW}_{q\bar{q}}$	$\delta^{\sf EW}_{q\gamma/\bar{q}\gamma}$
$\ell^-\ell^+\ell^+$	0.0338	-7.7 %	-16.3%	8.6 %
$e^{-}e^{+}e^{+}$	0.0031	-10.1%	-18.3%	8.2 %
$e^-e^+e^+ar{ u}_e u_e u_e$	0.0029	-9.9 <i>%</i>	-18.3%	8.3 %
$e^-e^+e^+ar{ u}_{\mu/ au} u_{\mu/ au} u_e$	0.0001	-13.4 %	-19.8%	6.4 %
$e^-e^+\mu^+$	0.0081	-6.8%	-16.6%	9.8 %
$e^-e^+\mu^+ar{ u}_e u_e u_\mu$	0.0079	-6.5%	-16.5%	10.0 %
$e^-e^+\mu^+ar{ u}_\mu u_\mu u_\mu$	0.0001	-11.9%	-18.0 %	6.1 %
$e^-e^+\mu^+ar u_ au u_\mu$	0.0001	-11.2%	-17.8 %	6.6%
$e^-\mu^+\mu^+$	0.0057	-7.7 %	-14.8%	7.0 %
$e^-\mu^+\mu^+ar{ u}_e u_\mu u_\mu$	0.0057	-7.7 %	-14.8%	7.0 %

- large accidental and cut dependent cancellations of Sudadov-type neg. EW corrections and γ -induced pos. contribs w/ extra jet activity
- WWW channels receive smaller corrections than pure WZZ channels

Triboson production

• off-shell $W^+W^+W^$ production

- includes 0, 1, 2 SFOS processes (WWW and WZZ structures)
- EW correction (incl. γ-induced) important
- cancellations of EW corr. in $q\bar{q}$ and $q\gamma/\bar{q}\gamma$ channels highly observable dependent

Triboson production – 0, 1, 2 SFOS decomposition

Triboson production - 0, 1, 2 SFOS decomposition

MS arXiv:1806.00307

Triboson production - 0, 1, 2 SFOS decomposition

MS arXiv:1806.00307

Triboson production

- $pp \rightarrow \ell_1^- \ell_2^+ \ell_3^+ \overline{\nu}_{\ell_1} \nu_{\ell_2} \nu_{\ell_3} @ 13 \text{ TeV}$ dơ/d∦ī [fb/GeV] 10 - NLO EW o SFC 10 1 SFOS ···· 2 SFOS 10 10^{-5} 10-6 10^{-7} 0.2 0.1 jų, -0.1 -0.2 -0.3 do / do NLOEW 0.8 0.6 0.4 0.2 20 50 100 200 500 1000 ¢_T [GeV]
- 1, 2 SFOS: req. p/_T > 50 GeV to suppress WZ background
- substantial γ -induced contributions
- accidental cancellations

Triboson production

MS arXiv:1806.00307

Marek Schönherr

Results for LHC EW WG

	Selection	Cut	Value		
	general	$p_{\mathrm{T}}(\ell)$	[20 GeV, ∞)		
		y(ℓ)	[-2.5, 2.5]		
		$\Delta R(\ell,\ell)$	$[0.1,\infty)$		
		$\Delta \phi({\it p}_{ m T},\ell\ell\ell)$	[2.5 , <i>π</i>]		
	0 SFOS	$\mathbf{m}_{\ell\ell}^{\scriptscriptstyle{SF}}$	[20 GeV, ∞)		
		$\mathbf{m}_{\ell\ell}^{{}_{eeSS}}$	$[0,m_Z-15 ext{GeV}]\wedge[m_Z+15 ext{GeV},\infty)$		
(1 SFOS	¢́⊤	[45 GeV, ∞)		
		$m_{\ell\ell}^{\scriptscriptstyle { m SFOS}}$	$[0,m_Z-35 ext{GeV}]\wedge[m_Z+20 ext{GeV},\infty)$ /		
(2 SFOS	ØT	[55 GeV, ∞)		
		$m_{\ell\ell}^{\scriptscriptstyle { m SFOS}}$	$[0,m_Z-20 ext{GeV}]\wedge[m_Z+20 ext{GeV},\infty)$ /		

- similar selection as before (differences marked in red)
- otherwise same setup as above

Results for LHC EW WG – 0 SFOS channel $(e^-\mu^+\mu^+)$

- similar findings as before
 - modest EW corrections in qq
 q
 channel
 - rel. large corrections from $\gamma\text{-induced}$ jet production
 - \rightarrow large accidental cancellations
 - \rightarrow net NLO EW correction small
- large dependence on fiducial phase space definition and observable

Results for LHC EW WG – 0 SFOS channel ($e^{-}\mu^{+}\mu^{+}$)

- similar findings as before
 - ightarrow large accidental cancellations between $qar{q}$ and $q\gamma/ar{q}\gamma$ -channels

Results for LHC EW WG – 0 SFOS channel ($e^{-}\mu^{+}\mu^{+}$)

- similar findings as before
 - \rightarrow size of accidental cancellations between $q\bar{q}\text{-}$ and $q\gamma/\bar{q}\gamma\text{-}\text{channels}$ very observable dependent

Conclusion

 $\gamma\gamma\gamma$

- fully off-shell triboson processes known at NLO QCD+EW
 - $3\ell 3
 u$ Campanario et.al. arXiv:0809.0790, MS arXiv:1806.00307
 - $\ell^\pm
 u \gamma \gamma$ Bozzi et.al. arXiv:1103.4613, Greiner, MS arXiv:1710.11514
 - $\ell^+\ell^-\gamma\gamma$ Bozzi et.al. arXiv:1107.3149, Greiner, MS arXiv:1710.11514
 - Greiner, MS arXiv:1710.11514
- on-shell production poor approximation of full off-shell production in the given fiducial phase space
- for $3\ell 3\nu$ production sizeable Sudakov-type EW corrections, but also large γ -induced real emission corrections \rightarrow large accidental and observable dependent cancellations