Chiral transport in strong fields from holography

Tuna Demircik

Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel

September 2, 2019

[1] Y. Bu, T. Demircik and M. Lublinsky, JHEP **05** (2019) 071, arXiv:1903.00896v2.

Outline:

- Hydrodynamics
- Chiral Transport
- Holography
- Holographic Model
- Gradient Expansion
- Gradient Resummation
- Conclusion

Hydrodynamics:

- **Hydrodynamics** is an effective low energy description of many interacting QFTs which is valid for fluctuations about global equilibrium under long wavelength limit.
- Dynamical content of hydro: Continuity equations

e.g. :
$$\partial_t \rho = - \vec{\nabla} \cdot \vec{J}$$
 (Needs extra input to be able solve!)

Constitutive relations (e.g.: $\vec{J} = -\mathcal{D}\vec{\nabla}\rho + \sigma\vec{E} + \cdots$)

• Constitutive relations are written as gradient expansion of hydro variables.

e.g. :
$$\vec{J} = -\mathcal{D}\vec{\nabla}\rho + \sigma\vec{E} + \cdots$$

Any term which respects **symmetries of underlying theory** and **thermodynamical constraints** can be written up to a **coefficients**.

Transport coefficients

(TCs should be determined either from the underlying microscopic theory or experimentally.)

Truncation at fixed order leads violation of causality!

(Ideally, one needs to include all orders of gradients \Rightarrow **Ressummation**!)

Chiral Transport:

• For massless Dirac fermions, independent phase rotations of **left** handed and **right handed** spinors are independent symmetries of the classical theory $(U(1)_L)$ and $U(1)_R$:

$$i\gamma^{\mu}\partial_{\mu}\Psi=0, \quad \Psi=\left(egin{array}{c} \psi_{L} \ \psi_{R} \end{array}
ight), \quad \psi_{L}
ightarrow \mathrm{e}^{i heta_{L}}\psi_{L} \quad \mathrm{and} \quad \psi_{R}
ightarrow \mathrm{e}^{i heta_{R}}\psi_{R}.$$

At the classical level:

$$\partial_{\mu}J_{L,R}^{\mu}=0$$
 where $J_{L,R}^{\mu}=\bar{\Psi}\gamma^{\mu}P_{\pm}\Psi$ and $P_{\pm}=(1\pm\gamma^{5})/2$.

At the quantum level, in the presence EM-field, only one linear combination of these to symmetries preserved:

$$\partial_{\mu}J^{\mu}=0$$
 and $\partial_{\mu}J^{\mu}_{5}=12\kappa\vec{E}\cdot\vec{B}$ ψ

Chiral Anomaly!

• Chiral Anomaly leads chiral asymmetry ($\mu_5 \neq 0$) in a relativistic plasma. \Rightarrow Modifies the contstitutive relation!*

Chiral Magnetic Effect (CME) : $\vec{J} \propto \mu_5 \vec{B}$ Chiral Separation Effect (CSE) : $\vec{J_5} \propto u \vec{B}$ Chiral Electric Separation Effect (CESE) : $\vec{J_5} \propto \mu_5 \vec{E}$ Zoo of anomaly **induced nonlinear transports** e.g. : Chiral Hall Effect (CHE) : $\vec{J} \propto \mu \vec{E} \times \vec{B}$ Anomalous Chiral Hall Effect : $\vec{J} \propto \mu \vec{E} \times \vec{\nabla} \mu_5$ **H**all **D**iffusion : $\vec{J} \propto \vec{B} \times (\mu \vec{\nabla} \mu + \mu_5 \vec{\nabla} \mu_5)$

• Note that some of these transports are Non-dissipative!

$$\left(\begin{array}{c} \mathcal{T}\text{-even TC} \Rightarrow \text{Nondissipative} \\ \mathcal{T}\text{-odd TC} \Rightarrow \text{Dissipative} \end{array} \right), \quad \text{e.g. CME, CHE, Hall Diffusion,} \cdots$$

^{*}CME: [A. Vilenkin, 1980], [K. Fukushima, D.E. Kharzeev, H.J. Waringa, 2008]

• Chiral Anomaly leads new collective modes which propagate through chiral plasma:

$$\begin{split} \mu &\to \delta \mu e^{-i(\omega t - \vec{q} \cdot \vec{x})}, \qquad \mu_5 \to \delta \mu_5 e^{-i(\omega t - \vec{q} \cdot \vec{x})}, \\ \omega &= \pm v_{\chi B} q \pm v_{\chi E} q + v_{\chi S} q + i D q^2 + \cdots. \end{split}$$

CME + **CSE**
$$\Rightarrow$$
 Chiral **M**agnetic **W**ave : $(v_{\chi B} \parallel \vec{B})$

CESE
$$\Rightarrow$$
 Chiral Electric Wave : $(v_{\chi B} \parallel \vec{E})$

CHE
$$\Rightarrow$$
 Chiral Hall Density Wave : $(v_{\chi S} \parallel \vec{S})$

• Remark: Realistic plasmas are exposed strong E/M fields! e.g. Quark-Gluon-Plasma [X.G. Huang, 2015], Primordial plasma in early universe [D. Grasso, H.R. Rubinstein, 2000]

Holography (AdS/CFT):

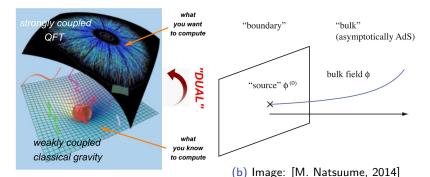
- Holography (AdS/CFT) is a duality between strongly-coupled gauge theory in 4D and weakly-coupled gravity theory in 5D. (It is a powerful tool to analyze strongly-coupled gauge theories by using classical gravitational theories!) $[N_c^2 \propto (L^3/G_5), \quad \lambda \propto (L/I_s)^4]$
- Gubser-Klebanov-Polyakov-Witten-relation:

$$\mathcal{Z}_{\mathsf{gauge}} = \mathcal{Z}_{\mathsf{AdS}}$$

$$\left\langle \exp\left(i\int\phi^{(0)}O\right)\right
angle = \exp\left(i\bar{S}[\phi|_{r=r_{B}}=\phi^{(0)}]\right)$$

(i.e. Bulk fields act as external sources of boundary operator!)

$$\left(\begin{array}{cccc} \text{e.g. Boundary operator} & \text{External sources} & \text{Bulk fields} \\ T^{\mu\nu} & \leftrightarrow & g^{(0)}_{\mu\nu} & \rightarrow & g_{MN} \\ J^{\mu} & \leftrightarrow & A^{(0)}_{\mu} & \rightarrow & A_{M} \end{array}\right)$$



(a) Image: [M. Baggioli, 2019]

1. The Large N limit of superconformal field theories and supergravity

(14822) Juan Martin Maldacena (Harvard U.). Nov 1997. 21 pp.

Published in Int.J.Theor.Phys. 38 (1999) 1113-1133, Adv.Theor.Math.Phys. 2 (1998) 231-252 HUTP-97-A097, HUTP-98-A097

DOI: 10.1023/A:1026654312961, 10.4310/ATMP.1998.v2.n2.a1

e-Print: hep-th/9711200 | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
ADS Abstract Service: AMS MathSciNet: OSTLgov Server

Detailed record - Cited by 14822 records 1000+

(c) The original AdS/CFT paper has been cited in all physics arXivs!

Holographic setup: $U(1)_V \times U(1)_A$

The Holographic model is **Maxwell-Chern-Simons theory** in the **Schwarzchild-** AdS_5 . The bulk action

$$S = \int d^5x \sqrt{-g} \mathcal{L} + S_{\text{c.t.}},$$

where

$$\mathcal{L} = -\frac{1}{4} (F^{V})_{MN} (F^{V})^{MN} - \frac{1}{4} (F^{a})_{MN} (F^{a})^{MN} + \frac{\kappa \epsilon^{MNPQR}}{2\sqrt{-g}} \times \left[3A_{M} (F^{V})_{NP} (F^{V})_{QR} + A_{M} (F^{a})_{NP} (F^{a})_{QR} \right],$$

$$S_{\text{c.t.}} = \frac{1}{4} \log r \int d^4 x \sqrt{-\gamma} \left[(F^V)_{\mu\nu} (F^V)^{\mu\nu} + (F^a)_{\mu\nu} (F^a)^{\mu\nu} \right],$$

and the background metric is

$$ds^{2} = g_{MN} dx^{M} dx^{N} = 2dtdr - r^{2} f(r) dt^{2} + r^{2} \delta_{ij} dx^{i} dx^{j},$$

where $f(r) = 1 - 1/r^4$, $r \in [1, \infty)$. Temperature is $\pi T = 1$.

Bulk equations can be split into dynamical $(EV^{\mu} = EA^{\mu} = 0)$ and constraint components (EV' = EA' = 0), where

$$EV^{M} \equiv \nabla_{N}(F^{V})^{NM} + \frac{3\kappa\epsilon^{MNPQR}}{\sqrt{-g}}(F^{a})_{NP}(F^{V})_{QR},$$

$$\mathrm{EA}^{M} \equiv \nabla_{N}(F^{a})^{NM} + \frac{3\kappa\epsilon^{MNPQR}}{2\sqrt{-g}}\left[(F^{V})_{NP}(F^{V})_{QR} + (F^{a})_{NP}(F^{a})_{QR}\right].$$

The boundary currents in terms the bulk fiels are

$$\begin{split} J^{\mu} &= \lim_{r \to \infty} \sqrt{-\gamma} \, \left\{ (F^{V})^{\mu M} n_{_{\!M}} + \frac{6 \kappa \epsilon^{M \mu N Q R}}{\sqrt{-g}} n_{_{\!M}} A_{N} (F^{V})_{Q R} - \widetilde{\nabla}_{\nu} (F^{V})^{\nu \mu} \log r \right\}, \\ J^{\mu}_{5} &= \lim_{r \to \infty} \sqrt{-\gamma} \, \left\{ (F^{a})^{\mu M} n_{_{\!M}} + \frac{2 \kappa \epsilon^{M \mu N Q R}}{\sqrt{-g}} n_{_{\!M}} A_{N} (F^{a})_{Q R} - \widetilde{\nabla}_{\nu} (F^{a})^{\nu \mu} \log r \right\}, \end{split}$$

Near boundary asymptotic expansion of the bulk gauge fields:

$$V_{\mu} = \mathcal{V}_{\mu} + \frac{V_{\mu}^{(1)}}{r} + \frac{V_{\mu}^{(2)}}{r^2} - \frac{2V_{\mu}^{\mathrm{L}}}{r^2} \log r + \mathcal{O}\left(\frac{\log r}{r^3}\right), \qquad A_{\mu} = \frac{A_{\mu}^{(2)}}{r^2} + \mathcal{O}\left(\frac{\log r}{r^3}\right),$$

where

$$V_{\mu}^{(1)} = \mathcal{F}_{t\mu}^{V}, \qquad \qquad 4V_{\mu}^{\mathrm{L}} = \partial^{\nu}\mathcal{F}_{\mu\nu}^{V}.$$

The currents in terms of coefficients of near boundary expansion:

$$J^{\mu} = \eta^{\mu\nu} (2 \frac{V_{\nu}^{(2)}}{\nu} + 2 V_{\nu}^{L} + \eta^{\sigma t} \partial_{\sigma} \mathcal{F}_{t\nu}^{V}), \qquad J_{5}^{\mu} = \eta^{\mu\nu} 2 A_{\nu}^{(2)}.$$

(Near boundary coefficients at $\mathcal{O}(r^{-2})$ determine the boundary currents!)

Fluid/Gravity correspondence*:

The most general static and homogeneous profiles for the bulk gauge fields:

$$V_{\mu}=\mathcal{V}_{\mu}-rac{
ho}{2r^2}\delta_{\mu t}, \hspace{1.5cm} A_{\mu}=-rac{
ho_{\scriptscriptstyle 5}}{2r^2}\delta_{\mu t},$$

with the boundary currents:

$$J^t = \rho, \quad J^i = 0; \qquad \qquad J^t_5 = \rho_5, \quad J^i_5 = 0.$$

Promoting $\mathcal{V}_{\mu},\ \rho,\ \rho_{5}$ into arbitrary functions of the boundary coordinates

$${\cal V}_{\mu}
ightarrow {\cal V}_{\mu}(x_{lpha}), \qquad \qquad
ho
ightarrow
ho_{ extsf{5}}
ightarrow
ho_{ extsf{5}}(x_{lpha}), \qquad \qquad
ho_{ extsf{5}}
ightarrow
ho_{ extsf{5}}(x_{lpha}),$$

causes them to cease to be solution. Corrections should be introduced

$$egin{aligned} V_{\mu}(r,x_{lpha}) &= \mathcal{V}_{\mu}(x_{lpha}) - rac{
ho(x_{lpha})}{2r^2} \delta_{\mu t} + \mathbb{V}_{\mu}(r,x_{lpha}), \ A_{\mu}(r,x_{lpha}) &= -rac{
ho_{\mathfrak{s}}(x_{lpha})}{2r^2} \delta_{\mu t} + \mathbb{A}_{\mu}(r,x_{lpha}). \end{aligned}$$

^{*:[}S.Bhattacharyya, V.E. Hubeny, S. Minwalla, M. Rangamani, 2008]

BCs:

- (i) regularity over $r \in [1, \infty)$
- (ii) $\mathbb{V}_{\mu} \to 0$, $\mathbb{A}_{\mu} \to 0$ as $r \to \infty$
- (iii) the Landau frame convention $(J^t = \rho(x_\alpha), J_5^t = \rho_5(x_\alpha))$

Equations for the corrections:

$$\begin{split} 0 &= r^3 \partial_r^2 \mathbb{V}_t + 3 r^2 \partial_r \mathbb{V}_t + r \partial_r \partial_k \mathbb{V}_k + 12 \kappa \epsilon^{ijk} \left[\partial_r \mathbb{A}_i \left(\partial_j \mathcal{V}_k + \partial_j \mathbb{V}_k \right) + \partial_r \mathbb{V}_i \partial_j \mathbb{A}_k \right], \\ 0 &= \left(r^5 - r \right) \partial_r^2 \mathbb{V}_i + \left(3 r^4 + 1 \right) \partial_r \mathbb{V}_i + 2 r^3 \partial_r \partial_t \mathbb{V}_i - r^3 \partial_r \partial_i \mathbb{V}_t + r^2 \left(\partial_t \mathbb{V}_i - \partial_i \mathbb{V}_t \right) \\ &+ r \left(\partial^2 \mathbb{V}_i - \partial_i \partial_k \mathbb{V}_k \right) - \frac{1}{2} \partial_i \rho + r^2 \left(\partial_t \mathcal{V}_i - \partial_i \mathcal{V}_t \right) + r \left(\partial^2 \mathcal{V}_i - \partial_i \partial_k \mathcal{V}_k \right) \\ &+ 12 \kappa r^2 \epsilon^{ijk} \left(\frac{1}{r^3} \rho_5 \partial_j \mathcal{V}_k + \frac{1}{r^3} \rho_5 \partial_j \mathbb{V}_k + \partial_r \mathbb{A}_t \partial_j \mathcal{V}_k + \partial_r \mathbb{A}_t \partial_j \mathbb{V}_k \right) \\ &- 12 \kappa r^2 \epsilon^{ijk} \partial_r \mathbb{A}_j \left[\left(\partial_t \mathcal{V}_k - \partial_k \mathcal{V}_t \right) + \left(\partial_t \mathbb{V}_k - \partial_k \mathbb{V}_t \right) + \frac{1}{2r^2} \partial_k \rho \right] \\ &- 12 \kappa r^2 \epsilon^{ijk} \left\{ \partial_r \mathbb{V}_j \left[\left(\partial_t \mathbb{A}_k - \partial_k \mathbb{A}_t \right) + \frac{1}{2r^2} \partial_k \rho_5 \right] - \partial_j \mathbb{A}_k \left(\partial_r \mathbb{V}_t + \frac{1}{r^3} \rho \right) \right\}, \end{split}$$

$$\begin{split} 0 &= r^3 \partial_r^2 \mathbb{A}_t + 3r^2 \partial_r \mathbb{A}_t + r \partial_r \partial_k \mathbb{A}_k + 12\kappa \epsilon^{ijk} \left[\partial_r \mathbb{V}_i \left(\partial_j \mathcal{V}_k + \partial_j \mathbb{V}_k \right) + \partial_r \mathbb{A}_i \partial_j \mathbb{A}_k \right], \\ 0 &= \left(r^5 - r \right) \partial_r^2 \mathbb{A}_i + \left(3r^4 + 1 \right) \partial_r \mathbb{A}_i + 2r^3 \partial_r \partial_t \mathbb{A}_i - r^3 \partial_r \partial_i \mathbb{A}_t + r^2 \left(\partial_t \mathbb{A}_i - \partial_i \mathbb{A}_t \right) \\ &+ r \left(\partial^2 \mathbb{A}_i - \partial_i \partial_k \mathbb{A}_k \right) - \frac{1}{2} \partial_i \rho_5 + 12\kappa r^2 \epsilon^{ijk} \left(\partial_j \mathcal{V}_k + \partial_j \mathbb{V}_k \right) \left(\partial_r \mathbb{V}_t + \frac{1}{r^3} \rho \right) \\ &- 12\kappa r^2 \epsilon^{ijk} \partial_r \mathbb{V}_j \left[\left(\partial_t \mathcal{V}_k - \partial_k \mathcal{V}_t \right) + \left(\partial_t \mathbb{V}_k - \partial_k \mathbb{V}_t \right) + \frac{1}{2r^2} \partial_k \rho \right] \\ &- 12\kappa r^2 \epsilon^{ijk} \left\{ \partial_r \mathbb{A}_j \left[\left(\partial_t \mathbb{A}_k - \partial_k \mathbb{A}_t \right) + \frac{1}{2r^2} \partial_k \rho_5 \right] - \partial_j \mathbb{A}_k \left(\partial_r \mathbb{A}_t + \frac{1}{r^3} \rho_5 \right) \right\}. \end{split}$$

I) Gradient expansion:

Introducing λ as a **gradient expansion parameter** $(\partial_{\mu} \to \lambda \partial_{\mu})$, the corrections of bulk fields are expandable in in powers of λ :

$$\mathbb{V}_{\mu} = \sum_{n=0}^{\infty} \lambda^{n} \mathbb{V}_{\mu}^{[n]}, \qquad \qquad \mathbb{A}_{\mu} = \sum_{n=0}^{\infty} \lambda^{n} \mathbb{A}_{\mu}^{[n]}.$$

Accordingly:

$$\vec{J} = \sum_{n=0}^{\infty} \lambda^n \vec{J}^{[n]}, \qquad \qquad \vec{J_5} = \sum_{n=0}^{\infty} \lambda^n \vec{J}_5^{[n]}.$$

The background fields \vec{E} and \vec{B} are treated as zeroth order in the gradient expansion, as opposed to our previous studies!

$$\vec{\mathbf{E}}, \vec{\mathbf{B}} \sim \mathcal{O}(\partial^0) \Rightarrow \mathsf{TCs} \rightarrow \mathsf{TCs}[\mathbf{E}^2, \mathbf{B}^2, (\vec{\mathbf{E}} \cdot \vec{\mathbf{B}})^2]$$

$\mathcal{O}(\lambda^0)$:

$$\begin{split} \vec{J}^{[0]} &= \sigma_e^0 \vec{\mathbf{E}} + \sigma_\chi^0 \kappa \rho_5 \vec{\mathbf{B}} + \delta \sigma_\chi^0 \kappa^2 (\vec{\mathbf{E}} \cdot \vec{\mathbf{B}}) \vec{\mathbf{B}} + \sigma_{\chi H}^0 \kappa^2 \rho \vec{\mathbf{B}} \times \vec{\mathbf{E}} + \sigma_{\chi e}^0 \kappa^3 \rho_5 (\vec{\mathbf{B}} \cdot \vec{\mathbf{E}}) \vec{\mathbf{E}} \\ \vec{J}_5^{[0]} &= \sigma_\chi^0 \kappa \rho \vec{\mathbf{B}} + \sigma_{\chi H}^0 \kappa^2 \rho_5 \vec{\mathbf{B}} \times \vec{\mathbf{E}} + \sigma_{\chi e}^0 \kappa^3 \rho (\vec{\mathbf{B}} \cdot \vec{\mathbf{E}}) \vec{\mathbf{E}} + \sigma_s^0 \kappa^3 (\vec{\mathbf{E}} \cdot \vec{\mathbf{B}}) \vec{\mathbf{B}} \times \vec{\mathbf{E}} \end{split}$$

Except σ_s^0 , all terms have already appeared in the literature. **The main novelty is:**

$$\sigma_e^0 = \sigma_e^0[\mathbf{E}^2,\,\mathbf{B}^2,\,(\vec{\mathbf{B}}\cdot\vec{\mathbf{E}})^2]; \qquad \sigma_\chi^0 = \sigma_\chi^0[\mathbf{E}^2,\,\mathbf{B}^2,\,(\vec{\mathbf{B}}\cdot\vec{\mathbf{E}})^2]; \qquad \text{etc...}$$

Alternatively:

$$\begin{split} J_{i}^{[0]} = & \sigma_{e}^{0} \left(\delta_{ij} - \frac{\mathbf{B}_{i} \mathbf{B}_{j}}{\mathbf{B}^{2}} \right) \mathbf{E}_{j} + \sigma_{e}^{0L} \frac{\mathbf{B}_{i} \mathbf{B}_{j}}{\mathbf{B}^{2}} \mathbf{E}_{j} + \sigma_{\chi}^{0} \kappa \rho_{5} \left(\delta_{ij} - \frac{\mathbf{E}_{i} \mathbf{E}_{j}}{\mathbf{E}^{2}} \right) \mathbf{B}_{j} \\ & + \sigma_{\chi}^{0L} \kappa \rho_{5} \frac{\mathbf{E}_{i} \mathbf{E}_{j}}{\mathbf{E}^{2}} \mathbf{B}_{j} + \sigma_{\chi H}^{0} \kappa^{2} \rho (\vec{\mathbf{B}} \times \vec{\mathbf{E}})_{i}, \end{split}$$

$$\text{where: } \sigma_{\rm e}^{\rm 0L} = \sigma_{\rm e}^{\rm 0} + \kappa^2 \mathbf{B}^2 \delta \sigma_{\chi}^{\rm 0}, \qquad \qquad \sigma_{\chi}^{\rm 0L} = \sigma_{\chi}^{\rm 0} + \kappa^2 \mathbf{E}^2 \sigma_{\chi \rm e}^{\rm 0}.$$

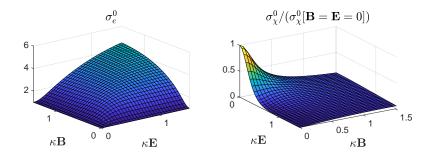
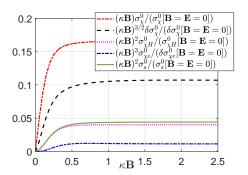


Figure: Zeroth order TCs as functions of e/m fields when $\vec{E} \parallel \vec{B}$

• Ohmic conductivity σ_e^0 gets enhancement!

(Without Anomaly: [G.T. Horowitz, N. Iqbal, J.E. Santos, 2013], [H.B. Zeng, Y.Tian, Z.Y. Fan, C.M. Fan, 2016, 2017], **Anomaly induced:New!**)

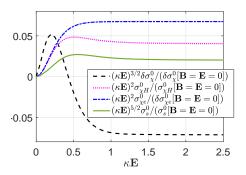
• Other TCs behave similary as σ_{χ}^{0} , i.e. decrease dramatically and vanish asymptotically!



• For $\kappa {\bf E}=0$, asymptotic behaviors for large- $\kappa {\bf B}$ can be extracted numerically:

$$\begin{split} \sigma_\chi^0[\kappa \mathbf{B} \to \infty, \kappa \mathbf{E} &= 0] \to \frac{1}{\kappa \mathbf{B}}, \quad \delta \sigma_\chi^0[\kappa \mathbf{B} \to \infty, \kappa \mathbf{E} = 0] \to \frac{3.349}{(\kappa \mathbf{B})^{3/2}}, \\ \sigma_{\chi H}^0[\kappa \mathbf{B} \to \infty, \kappa \mathbf{E} &= 0] \to -\frac{1}{(\kappa \mathbf{B})^2}, \quad \sigma_{\chi e}^0[\kappa \mathbf{B} \to \infty, \kappa \mathbf{E} = 0] \to \frac{0.977}{(\kappa \mathbf{B})^3}, \\ \sigma_s^0[\kappa \mathbf{B} \to \infty, \kappa \mathbf{E} &= 0] \to -\frac{6.751}{(\kappa \mathbf{B})^2}. \end{split}$$

(Note: σ_{χ}^0 is consistent with analytic results of [K.Landsteiner, Y.Liu, Y.W.Sun, 2015], [M.Ammon, S.Grieninger, A.J. Alba, 2016], [Y.Bu, M.Lublinsky, A.Sharon, 2017].)



• For $\kappa {\bf B}=0$, asymptotic behaviors for large- $\kappa {\bf E}$ can be extracted numerically:

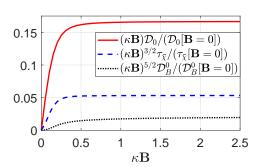
$$\begin{split} \delta\sigma_{\chi}^{0}[\kappa \mathbf{B} &= 0, \kappa \mathbf{E} \rightarrow \infty] \rightarrow -\frac{2.243}{(\kappa \mathbf{E})^{3/2}}, \quad \sigma_{\chi H}^{0}[\kappa \mathbf{B} = 0, \kappa \mathbf{E} \rightarrow \infty] \rightarrow -\frac{1}{(\kappa \mathbf{E})^{2}}, \\ \sigma_{\chi e}^{0}[\kappa \mathbf{B} &= 0, \kappa \mathbf{E} \rightarrow \infty] \rightarrow \frac{6.04}{(\kappa \mathbf{E})^{2}}, \qquad \sigma_{s}^{0}[\kappa \mathbf{B} = 0, \kappa \mathbf{E} \rightarrow \infty] \rightarrow -\frac{3.069}{(\kappa \mathbf{E})^{5/2}}. \end{split}$$

Except for $\sigma_{\chi}^{0}[\kappa \mathbf{B}=0]$ which decays much faster than any other TCs, and asymptotically does not scale as a power function of $\kappa \mathbf{E}$.

$$\mathcal{O}(\lambda^1)$$
:

We consider the cases of either $\mathbf{E} = 0$ or $\mathbf{B} = 0$ separately: $\mathbf{a})\mathbf{E} = \mathbf{0}$:

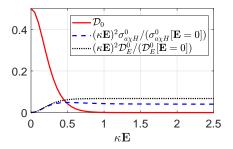
$$\vec{J}^{[1]} = -\mathcal{D}_0 \vec{\nabla} \rho + \tau_{\bar{\chi}} \kappa \partial_t \rho_5 \vec{\mathbf{B}} + \mathcal{D}_B^0 \kappa^2 (\vec{\mathbf{B}} \cdot \vec{\nabla} \rho) \vec{\mathbf{B}}, \quad \vec{J}_5^{[1]} : \rho \leftrightarrow \rho_5.$$



$$\begin{split} \mathcal{D}_0[\kappa \mathbf{B} \to \infty, \kappa \mathbf{E} = 0] &\to \frac{0.083}{(\kappa \mathbf{B})}, \qquad \tau_{\bar{\chi}}[\kappa \mathbf{B} \to \infty, \kappa \mathbf{E} = 0] \to -\frac{0.36}{(\kappa \mathbf{B})^{3/2}}, \\ \mathcal{D}_B^0[\kappa \mathbf{B} \to \infty, \kappa \mathbf{E} = 0] &\to -\frac{0.269}{(\kappa \mathbf{B})^{5/2}}. \end{split}$$

a)**B** = 0:

$$\vec{J}^{[1]} = -\mathcal{D}_0 \vec{\nabla} \rho + \sigma^0_{a\chi H} \kappa \vec{\mathbf{E}} \times \vec{\nabla} \rho_5 + \mathcal{D}_E^0 \kappa^2 (\vec{\mathbf{E}} \cdot \vec{\nabla} \rho) \vec{\mathbf{E}}, \quad \vec{J}_5^{[1]} : \rho \leftrightarrow \rho_5.$$



$$\sigma^0_{{\rm a}\chi H}[\kappa{\bf B}=0,\kappa{\bf E}\to\infty]\to -\frac{0.141}{(\kappa{\bf E})^2},\quad \mathcal{D}^0_E[\kappa{\bf B}=0,\kappa{\bf E}\to\infty]\to -\frac{0.298}{(\kappa{\bf E})^2}.$$

• \mathcal{D}_0 was shown to receive **negative E**²- and **B**²-corrections induced by the chiral anomaly ([Y.Bu, M.Lublinsky, A.Sharon, 2016],[Y.Bu, T,Demircik, M.Lublinsky, 2018]). \Rightarrow **Now it vanishes asymptotically!**

II) Gradient Ressumation:

- The framework of all order resummation was invented and improved through: [M.Lublinsky, E.Shuryak, 2009], [Y.Bu, M.Lublinsky, 2014, 2014, 2015, 2015, 2016]
- The essence is: Transport Coefficient Functions

$$\mathsf{TCs} \to \mathsf{TCFs}[\partial_t, \vec{\nabla}^2]$$

- i) contain information about infinitely many gradients.
- ii) valid beyond hydro limit $(\omega, q^2 \ll 1)$.
- iii) introduce memory functions.
- In this study, we relax weak field assumption (E = 0) for and employ linearization in ρ , ρ_5 :

$$ho
ightarrow \epsilon
ho, \qquad
ho_5
ightarrow \epsilon
ho_5, \qquad \mathbf{B} \sim \mathcal{O}(\epsilon^{\mathbf{0}}).$$

$$\Downarrow$$

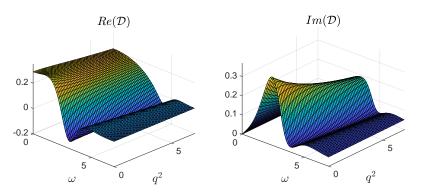
$$\mathsf{TCFs}[\partial_t, \vec{\nabla}^2]
ightarrow \mathsf{TCFs}[\partial_t, \vec{\nabla}^2, (\kappa \mathbf{B})^2, (\kappa \vec{\mathbf{B}} \cdot \vec{q})^2]$$

$$(\mathsf{The \ main \ novelty!})$$

$\mathcal{O}(\epsilon)$:

$$\vec{J} = -\mathcal{D}\vec{\nabla}\rho + \frac{\mathcal{D}_{B}\kappa^{2}\vec{\mathbf{B}}(\vec{\mathbf{B}}\cdot\vec{\nabla}\rho) + \bar{\sigma}_{\bar{\chi}}\kappa\vec{\mathbf{B}}\rho_{5} + \mathcal{D}_{\chi}\kappa(\vec{\mathbf{B}}\cdot\vec{\nabla})\vec{\nabla}\rho_{5}, \quad \vec{J}_{5}: \rho \leftrightarrow \rho_{5}.$$

where: $\mathcal{D}[\partial_t, \vec{\nabla}^2, (\kappa \mathbf{B})^2, (\kappa \vec{\mathbf{B}} \cdot \vec{q})^2], \quad \mathcal{D}_B[\partial_t, \vec{\nabla}^2, (\kappa \mathbf{B})^2, (\kappa \vec{\mathbf{B}} \cdot \vec{q})^2], \text{ etc..}$



• All the TCFs exhibit similar behavior: relatively weak dependence on q^2 ; damped oscillations in ω .

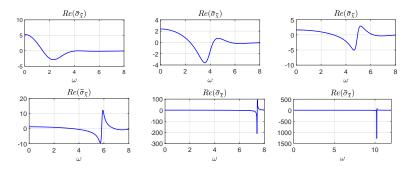


Figure: $Re(\bar{\sigma}_{\bar{\chi}})$ as a function of ω when q=0 and $\kappa \mathbf{B} = 0.1 \rightarrow \kappa \mathbf{B} = 0.4 \rightarrow \kappa \mathbf{B} = 0.6 \rightarrow \kappa \mathbf{B} = 0.8 \rightarrow \kappa \mathbf{B} = 1.2 \rightarrow \kappa \mathbf{B} = 2.2$.

- TCFs become singular when magnetic field is large enough ($\kappa B \gtrsim 0.5$)!
- At larger values of $\kappa \mathbf{B}$, additional singularities emerge at larger ω .
- Locations of these additional singularities are **symmetric** about the origin.

• These singularities are the Quasi Normal Modes!

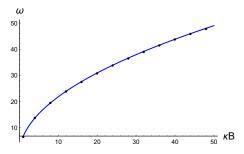


Figure: Location of the singularity as a function of $\kappa {\bf B}$: numerical result (black dots) is best fitted by $\omega = -0.155157 + 6.95306 \sqrt{\kappa {\bf B}}$ (blue curve).

The lowest QNM exhibit Landau level behavior:

$$Re[\omega] \sim \sqrt{\kappa {f B}}, \qquad Im[\omega]
ightarrow 0$$
 [M.Ammon, S.Grieninger, A.J.Alba, R.P. Macedo, L.Melgar, 2016]

 Similar phenomenon was found recently and named as "anomalous resonance" in [M.Haack, D. Sarkar, A.Yarom, 2019]. Modifications on CMW:

$$\omega = \pm \left(\bar{\sigma}_{\bar{\chi}} - q^2 \mathcal{D}_{\chi} \right) \kappa \vec{\mathbf{B}} \cdot \vec{q} - i \left(q^2 \mathcal{D} - \mathcal{D}_B (\kappa \vec{\mathbf{B}} \cdot \vec{q})^2 \right).$$

Can CMW be fully non-dissipative ⇒ Yes!

[Y.Bu, M.Lublinsky, T.Demircik, 2018]

• Can CMW be fully non-dissipative at large magnetic field? ⇒ Yes!

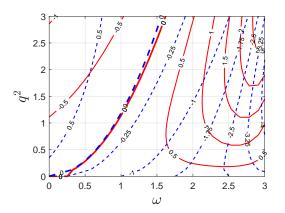


Figure: Contour plots for the functions ϕ_R (blue dashed) and ϕ_I (red solid) at $\kappa \mathbf{B} = 0.33$.

Conclusion:

- In this work we focused on **influence of strong background e/m fields on chiral anomaly-induced transport phenomena** for a holographically defined thermal plasma.
- Constitutive relations for $\vec{J}, \vec{J_5}$ were evaluated within two complimentary approximation schemes: a **fixed order gradient expansion** (up to first order) and an **all-order gradient resummation** (linear in ρ, ρ_5).
- TCs are found to be suppressed by the external fields and vanish at asymptotically strong fields, except the Ohmic conductivity which gets enhanced in parallel electrical and magnetic fields.
- When $\vec{\bf E}=0$, the all-order resummed constitutive relations are parameterised by four independent TCFs, which are functions of ω, \vec{q} and $\vec{\bf B}$. The TCFs are found to show a common singularity at ${\bf B}$ is strong enough. This singularity is identified as QNM and obey Landau level behavior.
- Previously, discovered **non-dissipative and thus long-lived CMW mode** is examined CMW exactly without the weak field approximation.

Thanks!