Progress in Chiral Thermodynamics -- Chiral Mixing in Dense Matter --

Chihiro Sasaki
Institute of Theoretical Physics
University of Wroclaw

Why chiral mixing?

- Q. Do we see any signal of chiral symmetry restoration in dilepton measurement?
- \square Light vector mesons change their properties in hot/dense matter --- χ -sym. restoration?
- ☐ The best way: V spectrum vs. A spectrum
- □ Axial-vector mesons can show up in vector spectrum in a medium!

<VV> \leftarrow chiral mixing \rightarrow <AA>

Low-energy theorem

for low $T \lesssim m_\pi$: [Dey, Eletsky and loffe (90)]

$$G_V^{\mu\nu}(T) = (1 - \epsilon)G_V^{\mu\nu}(0) + \epsilon G_A^{\mu\nu}(0)$$

$$G_A^{\mu\nu}(T) = (1 - \epsilon)G_A^{\mu\nu}(0) + \epsilon G_V^{\mu\nu}(0)$$

$$\epsilon = \frac{T^2}{6F_\pi^2}$$

From low T to high T

- ☐ Weinberg SRs [Weinberg ('67); Kapusta, Shuryak ('94)]
- □ Vector SF & ansatz for a1 mass and width
 - ✓ Reduction of a1 mass, width broadening
 - ✓ Role of higher-lying states: ρ' , a1', ...

Holographic approach

Spectral function: Not BW

- \square C = 1 GeV, 3-momentum p = 0.5 GeV
- □1 bump of shifted rho, 1 bump of shifted a1

Chiral mixing induced by WZW

□ Wess-Zumino-Witten term [Kaiser, Meissner ('90)]

$$\mathcal{L}_{\omega\rho a_1} = g_{\omega\rho a_1} \epsilon^{\mu\nu\lambda\sigma} \omega_{\mu} \left[\partial_{\nu} V_{\lambda} \cdot A_{\sigma} + \partial_{\nu} A_{\lambda} \cdot V_{\sigma} \right]$$

$$\langle \omega_0 \rangle = g_{\omega NN} \cdot n_B / m_\omega^2$$
 $C = g_{\omega \rho a_1} \cdot g_{\omega NN} \cdot \frac{n_B}{m_\omega^2}$

- \square Mixing strength: $C = 0.1 \text{ GeV at } \rho_0$
 - AdS/QCD \rightarrow C = 1 GeV at $\rho \circ \rightarrow$ vector cond.!?
 - Why so large? --- higher-lying states in large Nccf. VMD

$$C_{\text{hQCD}} \sim C_{\omega\rho a_1} + \sum_{n} C_{\omega^n \rho a_1}$$

Dilepton rates at T = 100 MeV

 $\Box \text{Propagator using } D_{V,A} = s - m_{\rho,a_1}^2 + i m_{\rho,a_1} \Gamma_{\rho,a_1}(s)$

$$G_V^L = \left(\frac{g_V}{m_V}\right)^2 \frac{-s}{D_V} \,, \quad G_V^T = \left(\frac{g_V}{m_V}\right)^2 \frac{-sD_A + 4c^2\vec{p}^2}{D_V D_A - 4c^2\vec{p}^2}$$

$$\frac{dN}{d^4p}(p_0, \vec{p}; T, n_B)$$

$$= \frac{\alpha^2}{\pi^3 s} \frac{1}{e^{p_0/T} - 1} \text{Im} G_V$$

$$\frac{dN}{ds}(s;T,n_B) = \int \frac{d^3\vec{p}}{2p_0} \frac{dN}{d^4p}$$

A missing piece: χ sym. restoration

 $<AA> \rightarrow <VV>$

CS, arXiv:1906.05077

Chiral restoration vs. mixing

☐ Dispersion relations for small 3-momenta

$$p_0^2 \simeq m_{a_1,\rho}^2 + \left(1 \pm \frac{4C^2}{m_{a_1}^2 - m_{\rho}^2}\right) \bar{p}^2$$

- \Box The mixing effect will be enhanced as δ m decreases!
 - \triangleright In-medium δ m
 - ➤In-medium mixing C

Set-up: rho/omega

- ☐ Mass difference = order parameter
 - Chiral restoration $\rightarrow <\sigma>$
 - Density effect \rightarrow < ω_0 >

Chiral MF models

■Nucleon parity-doublet model

[Zschiesche et al.]

- ✓ Tc at μ =0
- ✓ Nuclear ground state [CS, Mishustin ('10)]
- → Masses & mixing

Mass difference vs. mixing: T=50 MeV

Spectral function at T = 50 MeV

(top) chiral restoration (bottom) no restoration

--- longitudinal --- transverse --- average

Set-up: phi

- \square Masses of Φ meson and $f_1(1420)$?
 - Screening mass in LQCD: modification sets in at Tc

Assumptions:

- > δ m(q) ≈ 0 at Tc
- $> \delta$ m(s) \approx 0 at 1.2 Tc
- Constant mass of vector states

[Cheng et al., ('11)]

Rho/omega spectrum at T = 50 MeV

Phi spectra at T = 50 MeV

Dilepton rates at T = 50 MeV

Dilepton rates at T = 50 MeV

ϕ width broadening

Summary

- ☐ Parity doubling of vector mesons
 - Chiral mixing: pion-induced vs. density-induced (decreases) (increases)

[Harada, CS, Weise ('08)]

- ☐ Chiral symmetry restoration
 - ρ , ω sector: enhancement below vac mass, screened by many-body effects?
 - lacktriangledown sector: bumps below/above m ϕ
 - Relevant to the physics at FAIR, NICA, J-PARC!