Partial Wave Analysis as a Tool in Baryon Spectroscopy

Theory of hot matter and relativistic heavy-ion collisions
THOR Annual Meeting ITÜ , Istanbul, Turkey September, 2019

Colaboration

- University of Tuzla
- Jugoslav Stahov
- Hedim Osmanovic
- Rifat Omerovic
- Institute Rudjer Boskovic, Zagreb
- Alfred Svarc
- Institute of Nuclear Physics

Johannes Gutenberg-Universität Mainz

- Lothar Tiator
- Viktor Kashevarov
- Michael Ostrick
- George Washington University
- Ron Workman

PWA \& L+P up to now

PWA

(1) Fixed-t analyticity as a constraint in single energy partial wave analyses of meson photoproduction reactions
(2) Single-Energy Partial Wave Analysis for π^{0} Photoproduction on Proton with Fixed-t Analyticity Imposed
(3) Eta and Etaprime Photoproduction on the Nucleon with the Isobar Model EtaMAID2018
(4) From Experimental Data to Pole Parameters in a Direct Way (Angle Dependent Continuum Ambiguity and Laurent + Pietarinen Expansion)

$L+P$

(1) Phys.Rev. C88 (2013) no.3, 035206
(2) Phys.Rev. C89 (2014) no.4, 045205
(3) Phys.Rev. C89 (2014) no.6, 065208

4 Phys.Rev. C91 (2015) no.1, 015207
(5) Phys.Lett. B755 (2016) 452-455
(6) Phys.Rev. C94 (2016) no.6, 065204
(7) Phys.Rev.Lett. 119 (2017) no.6, 062004
(8) Eur.Phys.J. A53 (2017) no.12, 242
(1) Introducing the Pietarinen expansion method into the single-channel pole extraction problem
(2) Poles of Karlsruhe-Helsinki KH80 and KA84 solutions extracted by using the Laurent-Pietarinen method
(3) Pole positions and residues from pion photoproduction using the Laurent-Pietarinen expansion method
(4) Pole structure from energy-dependent and single-energy fits to GWU-SAID πN elastic scattering data
(5) Generalization of the model-independent Laurent-Pietarinen single-channel pole-extraction formalism to multiple channels
(6) Baryon transition form factors at the pole
(1) Strong evidence for nucleon resonances near 1900 MeV
(8) N^{*} resonances from $K \wedge$ amplitudes in sliced bins in energy

Experiment

Outline

Database

Laurent + Pietarinen $(L+P)$

Experiment

Outline

Database
PWA
Laurent + Pietarinen (L+P)

Reaction	Year	Source - Authors	Energy Range W [MeV]	Number of Data
$\begin{gathered} \stackrel{\sim}{*} \\ \uparrow \\ \stackrel{\sim}{i} \end{gathered}$	Differential cross section σ_{0}			
		A.Ando et al., Physik Daten, Karlsruhe	1203-1517	106
	1972	C. Bacciet al., Phys. Lett. C 39, 559	1323-1535	
	1973	Y. Hemmiet al., Nucl. Phys. B 55, 333	1318-1604	
	1967	Klinesmith, Ph.D Thesis	1611-1869	
	2017	Dieterle M. PLB-770 523	450-1430	1290
	2018	Dieterle M. PRC-97 065205	430-1450	
	Beam assymetry \sum			
	2009	R.Di Salvo et al., Eur. Phys. J. A 42, 151	1484-1912	216
	Double - polarisation asimmetry E			
	2017	Dieterle M. PLB-770(2017)523	450-1430	170

Data in light purple rows are not included in analysis

Experiment

Outline

Database

Reaction	Year	Source－Authors	Energy Range	Number of
			W ［ MeV ］	Data
R+1\uparrow2	Differential cross section σ_{0}			
	1967－2001	S．D．Ecklund，R．L．Walker，Phys Rev．159， 1195 （1967）	14812201	2534
		C．Betourne et al．，Fhys Rev．172， 1343 （1968）		
		B．Bouquet et al．，Phys．Rev．Lett．27， 1244 （1971）		
		T．Fujii et al．，Phys．Rev．Lett 26.1672 （1971）		
		K．Ekstrand et al．，Phys．Rev．D6， 1 （1972）		
		T．Fuji et al，Nucl．Phys．B120， 395 （1977）		
		｜．Arai et al，J．Phys．Soc．Jap．43， 363 （1977）		
		E J．Durwen，Ph．D．Thesis（1980）；BONN－R－B0－7		
		K．H．Althoff et al．，Z．Phys．C18， 199 （1983）		
		W．Heise．Ph D．Thesis（198B）；BONN－IR－8B－06		
		K．Buechler et al．Nucl Phys A570． 580 （1994）		
		H．W．Dannhausen et al．Eur．Phys．J．A11， 441 （2001）		
	2009	M．Dugger et al．，Phys．Rev，C79， 065206	1497 －2505	
	2004	1．Ahrens et al．，Eur．Phys．」．A21， 323	1178－1313	
	2005	1．Ahrens et al．，Phys Rev．C74， 045204	1323－1533	
		Beam asymmetry Σ		
		G．Blanpied et al．Phys．Rev．［64， 025203 （2001）		
		」 Bocquet et al．，AIP Conf．Proc．603， 499 （2001）		
		R．E．Taylor R．F．Mazley，Phys．Rev． 117835 （1960）		
		R．C．Smith，R．F．Mazley，Phys．Rev．130， 2429 （1963）		
		1 Alspector et al．，Phys．Rev．Lett．28， 1403 （1972）		
	1960－2001	G．Knies etal．，Phys．Rev．D10， 2773 （1974）	1201－2259	
		V B Ganenko et al．Yad Fiz．23．100（1976）		1288
		P \＆Bussey et al Nuel Phys．B154． 205 （1979）		
		V A Getman et al．，Nuel．Phys．B188， 397 （1981）		
		P．Hampe，Ph．D．Thesis， 1980		
		R．Beck et al．，Phys Rev．C01， 035204 （2000）		
		J．Ajaka et al．Phys．Lett．B475 372 （2000）		
	2014	M．Dugger et al．PRC BB， 065203 （2013），PRC 89， 029901	1724－2093	

Year	Source－Authors	Energy Range	Number of
		W［ MeV ］	Data
Recoil asymmetry P			
1979－1981	P．f．Bussey et al．，Nucl Phys．E154， 205 （1979）	1201－2259	252
	V．A．Getman et al．，Nucl．Phys．B188， 397 （1981）		
	K．Egawa et al．，Nucl．Phys．B18B， 11 ［1981）		
Target asymmetry T			
1972－1996	P．1．Bussey et al．，Nucl Phys．B154 205 （1979）	1201－2360	912
	V．A．Getman et al．，Nucl Phys．B188， 397 （1981）		
	K．H．Althoff et al．，Nucl．Phys．B53， 9 （1973）		
	S．Arai et al，Nucl．Phys．B43， 397 （1972）		
	P．Feller et al，Nucl．Fhys B102， 207 （1976）		
	K．H．Althoff et al．Phys．Lett．B59 93 （1975）		
	H Genzel et al．Nucl．Phys．B92． 196 （1975）		
	K．H．Althoff et al．，Phys．Lett．B63， 107 （1976）		
	K．H．Althaff et al．，NuEl．Phys．B131， 1 （1977）		
	M．Fukushima et al，Nucl．Phys．B130， 486 （1977）		
	V．A．Getman et al，Yad．Fiz．32， 1008 （1980）		
	K．Fujil et al，Nucl．Phys，B197， 365 （1982）		
	H．Dutz et al，Nucl．Phys．A601， 319 （1996）		
2013	V．Kashevarov，PWA7 Camogli	1300－1650	
Double－polarisation asymmetry G			
1980－2005	J Ahrens et al．，Eur．Phys．」 A26， 135 （2005）	1217－2097	86
	P．. Bussey et al．，Nucl．Phys．Bl69， 403 （1980）		
	A．A．Belyaer et al．，Yad．Fiz．40， 133 （1984）		
	Double polarisation H		
1980－1986	PJ Bussoy et al．Nuel Phys． 8169403 （1980）	12172052	128
	A．A．Belyeev et al，Yad．Fiz．43， 1469 （1986）		
	A．A．Belyaev et al．，Yad．Fiz．40， 133 （1984）		
Double－polarisation asymmetry F			
2013	V．Kashevarov．PWA7 Camogli	1300－1650	251

Experiment

Outline
 Database

Reaction	Year	Source－Authors	Energy Range W ［MeV］	Number of Data	Year	Source－Authors	Energy Range W［MeV］	Number of Data
Q 1 F \uparrow E		Differential cross sect	ion σ_{0}			Beam asymmetr	Σ	
	1978	PEArganet al Nud Phys A 296， 373	1188－1312	1494	1989	F V Adamian et al．」 Phys G 15， 1797	1575－2061	304
	1974	M Beneventano et al．Nuovo Cim A 19.529	1336－1587		1972	」 Alspector et al．Phys Rev Lett 28． 1403	1483－2154	
	1977	T．Fujii et al．．Nucl．Phys．B 120． 395	1174.1761		1974	G．Knies et al Phys．Rev．D 10， 2778	1438－1539	
	1981	K．Fujii et al．．Nud．Phys．B 187.53 （1981）．			1974	K．Kondo et al．，Phys．Rev．D 9529	1203－138B	
	1974	G．von Holtey et al．，Nucl．Phys，B 70， 379	1167－1279		2010	G．Mandaglio et aL．Phys．Rev．C 82， 045209	1516－1894	
	1960	G．Neugebauer et al．Phys．Rev．119， 1726	1350－1662		1980	L．O．Abrahamian，Sov．J．Nucl．Phys．32， 69	1604－1996	
	1974	P．E．5chefler．PL．Walden，Nucl Phys．B 75， 125	1418－1798		1976	V．B．Ganerko，Sov．」 Nucl．Phys．23， 511	1203－135D	
	2012	W Chen et al，Phys Rev．C 86， 015206	1690－2620		1964	FF Liu et al，Phys Rev．B 136,1183	1226－1315	
		Target asymmetry			1995	A M Sandorfi，Proc Conf，05／30／95	1188－1220	
	1989	VLAgranovich et al．VANT 8.5	1187－1279	105	Recoil asymmetry P			
	1975	K．H．Althoff et al．．Nucl．Phys．B 96,497	1315－2154		1980	H Takeda et al．．Nucl．Phys．B 168,17	1494－1764	
	1976	K．H．Althoff et al．Nucl．Phys．B 116． 253	1315－2154		1963	J．P．Kenemuth，P．C．Stein．Phys．Rev．129． 2259	1492	27
	1977	T．Fujii et al．，Nucl．Phys．B 120， 395	1393－1604		1974	M．Beneventano et al．，Nuovo Cim．A 19， 529	1360－1492	
	1981	K．Fujii et al．．Nucl．Phys．B 187． 53	1393－1604					

Experimental data

Experimental Data Distribution

Outline

Database
PWA
Laurent + Pietarinen $(L+P)$

Experimental data

Experimental Data $\left[\pi^{0} p, \pi^{0} n\right]$

Experimental data

Outline

Database
PWA
Laurent + Pietarinen $(L+P)$

Experimental Data $\left[\pi^{0} p, \pi^{0} n, \pi^{+} n, \pi^{-} p\right]$

Experiment -> Poles

Fixed-t $<>$ Single Energy

IA from start solution

$$
\begin{aligned}
& \text { At each } t \text {-value } \\
& \text { perform FT AA } \\
& \text { Minimize: } \\
& \chi^{2}=\chi_{d a t a}^{2}+\chi_{P W}^{2}+\Phi
\end{aligned}
$$

Use results from SE PWA to calculate IA which
is used as an constraint in FT amplitude analysis

Fixed-t <> Single Energy

Single channel formalism

Laurent series - L

- Laurent expansion of a complex analytic function

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} a_{-n}\left(z-z_{0}\right)^{-n}
$$

Single channel formalism

Laurent series - L

- Laurent expansion of a complex analytic function

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} a_{-n}\left(z-z_{0}\right)^{-n}
$$

- Aplied to a single channel scattering matrix

$$
T(W)=\frac{a_{-1}}{W_{0}-W}+\sum_{n=0}^{\infty} a_{n}\left(W-W_{0}\right)^{n}
$$

Single channel formalism

Laurent series - L

- Laurent expansion of a complex analytic function

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} a_{-n}\left(z-z_{0}\right)^{-n}
$$

- Aplied to a single channel scattering matrix

$$
T(W)=\frac{a_{-1}}{W_{0}-W}+\sum_{n=0}^{\infty} a_{n}\left(W-W_{0}\right)^{n}
$$

- Generalized Laurent expansion for the function with k poles

$$
T(W)=\sum_{i=1}^{k} \frac{a_{-1}^{(i)}}{W_{i}-W}+B^{L}(W)
$$

Single channel formalism

Laurent series - L

- Laurent expansion of a complex analytic function

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} a_{-n}\left(z-z_{0}\right)^{-n}
$$

- Aplied to a single channel scattering matrix

$$
T(W)=\frac{a_{-1}}{W_{0}-W}+\sum_{n=0}^{\infty} a_{n}\left(W-W_{0}\right)^{n}
$$

- Generalized Laurent expansion for the function with k poles

$$
T(W)=\sum_{i=1}^{k} \frac{a_{-1}^{(i)}}{W_{i}-W}+B^{L}(W)
$$

- k - number of poles, $a_{-1}^{(i)}$ and W_{i} are residues and pole positions for i-th pole, $B^{L}(W)$ regular function in all $W \neq W_{i}$

Single channel formalism

Laurent series - L

Outline

Database
PWA
Laurent + Pietarinen (L+P)

Laurent expansion is valid only locally

Single channel formalism

Pietarinen series - P

- Using different aproach than standard power series for the regular part of Laurent expansion

Single channel formalism
 Pietarinen series - P

- Using different aproach than standard power series for the regular part of Laurent expansion
- S. Ciulli and J. Fischer in Nucl. Phys. 24, 465 (1961).
I. Ciulli, S. Ciulli, and J. Fisher, Nuovo Cimento 23, 1129 E. Pietarinen, Nuovo Cimento Soc. Ital. Fis. 12A, 522 (1972).

Single channel formalism
 Pietarinen series - P

 (L+P)- Using different aproach than standard power series for the regular part of Laurent expansion
- S. Ciulli and J. Fischer in Nucl. Phys. 24, 465 (1961).
I. Ciulli, S. Ciulli, and J. Fisher, Nuovo Cimento 23, 1129
E. Pietarinen, Nuovo Cimento Soc. Ital. Fis. 12A, 522 (1972).
- It has been used, with great success in the KH PWA

Single channel formalism
 Pietarinen series - P

- Using different aproach than standard power series for the regular part of Laurent expansion
- S. Ciulli and J. Fischer in Nucl. Phys. 24, 465 (1961).
I. Ciulli, S. Ciulli, and J. Fisher, Nuovo Cimento 23, 1129 E. Pietarinen, Nuovo Cimento Soc. Ital. Fis. 12A, 522 (1972).
- It has been used, with great success in the KH PWA
- To avoid discussing the arbitrariness of all possible choices for the background function $B^{L}(W)$ by replacing it with rapidly converging Pietarinen power series defined by a complete set of functions with well known analytic properties.

Single channel formalism
 Pietarinen series - P

- Using different aproach than standard power series for the regular part of Laurent expansion
- S. Ciulli and J. Fischer in Nucl. Phys. 24, 465 (1961).
I. Ciulli, S. Ciulli, and J. Fisher, Nuovo Cimento 23, 1129
E. Pietarinen, Nuovo Cimento Soc. Ital. Fis. 12A, 522 (1972).
- It has been used, with great success in the KH PWA
- To avoid discussing the arbitrariness of all possible choices for the background function $B^{L}(W)$ by replacing it with rapidly converging Pietarinen power series defined by a complete set of functions with well known analytic properties.
- If $F(W)$ is analytic function having a cut starting at $W=x_{P}$ then

$$
F(W)=\sum_{n=0}^{N} c_{n} Z^{n}(W) \quad \text { where } \quad Z(W)=\frac{\alpha-\sqrt{x_{p}-W}}{\alpha+\sqrt{x_{p}-W}}
$$

Single channel formalism

Pietarinen series - P

- LHC, RHC, Poles

Single channel formalism

Pietarinen series - P

- LHC, RHC, Poles
- One Pietarinen series to represent each cut
(L+P)

Single channel formalism

Pietarinen series - P

- LHC, RHC, Poles
- One Pietarinen series to represent each cut
- As we have too many cuts in PW we will group them into two cateogories

Single channel formalism

Pietarinen series - P

- LHC, RHC, Poles
- One Pietarinen series to represent each cut
- As we have too many cuts in PW we will group them into two cateogories
- all negative energy cuts are approximated with only one, effective negative energy cut represented with one Pietarinen series

Single channel formalism

Pietarinen series - P

- LHC, RHC, Poles
- One Pietarinen series to represent each cut
- As we have too many cuts in PW we will group them into two cateogories
- all negative energy cuts are approximated with only one, effective negative energy cut represented with one Pietarinen series
- each physical cut is represented with its own Pietarinen series with branch points determined by the physics of the process.

Database
PWA

Single channel formalism

Pietarinen series - P

- LHC, RHC, Poles
- One Pietarinen series to represent each cut
- As we have too many cuts in PW we will group them into two cateogories
- all negative energy cuts are approximated with only one, effective negative energy cut represented with one Pietarinen series
- each physical cut is represented with its own Pietarinen series with branch points determined by the physics of the process.
- Equation wich define Laurent expansion + Pietarinen series method ($L+P$ method):

$$
\begin{gathered}
T(W)=\sum_{i=1}^{k} \frac{x_{i}+\imath y_{i}}{W_{i}-W}+\sum_{k=1}^{K} c_{k} X(W)^{k}+\sum_{l=1}^{L} d_{l} Y(W)^{\prime}+\sum_{m=1}^{M} e_{m} Z(W)^{m} \\
X(W)=\frac{\alpha-\sqrt{x_{\boldsymbol{P}}-W}}{\alpha+\sqrt{x_{\boldsymbol{P}}-W}} ; \quad Y(W)=\frac{\beta-\sqrt{x_{Q}-W}}{\beta+\sqrt{x_{Q}-W}} ; \quad Z(W)=\frac{\gamma-\sqrt{x_{\boldsymbol{R}}-W}}{\gamma+\sqrt{x_{\boldsymbol{R}}-W}} \\
D_{d p}=\frac{1}{2 N_{E}} \sum_{i=1}^{N_{E}}\left[\left(\frac{\Re T_{i}^{f i t}-\Re T_{i}}{\operatorname{Err}_{i}^{\Re}}\right)^{2}+\left(\frac{\Im T_{i}^{f i t}-\Im T_{i}}{\operatorname{Err}_{i}^{\Im}}\right)^{2}\right]
\end{gathered}
$$

Multi/Coupled - channel/multipole... formalism

Outline

Database

- Correlated multipoles in π and η photoproduction, and partial wave amplitudes in coupled-channel models can only be treated in a sequence of independent single-channel procedures, missing the constraint that poles in all such situations must be the same.
- Also, in some cases, all existing poles may not be recognized in each individual process, and that in particular happens if a resonance coupling to a particular channel is weak.

Multi/Coupled - channel/multipole... formalism

The generalization of $L+P$ method to MC L+P is performed in the following way:

Outline

Database

$$
\begin{gathered}
T^{\mathbf{a}}(W)=\sum_{\boldsymbol{i}=\mathbf{1}}^{\boldsymbol{k}} \frac{x_{i}^{(\mathbf{a})}+\imath y_{\boldsymbol{i}}^{(\mathbf{a})}}{W_{\boldsymbol{i}}-W}+\sum_{\boldsymbol{k}=\mathbf{1}}^{\boldsymbol{K}} c_{k}^{(\mathbf{a})} X^{(\mathbf{a})}(W)^{\boldsymbol{k}}+\sum_{\boldsymbol{l}=\mathbf{1}}^{\boldsymbol{L}} d_{\boldsymbol{l}}^{(\mathbf{a})} Y^{(\mathbf{a})}(W)^{\boldsymbol{I}}+\sum_{\boldsymbol{m}=\mathbf{1}}^{\boldsymbol{M}} e_{\boldsymbol{m}}^{(\mathbf{a})} Z^{(\mathbf{a})}(W)^{\boldsymbol{m}} \\
X^{(\mathbf{a})}(W)=\frac{\alpha^{(\mathbf{a})}-\sqrt{x_{\boldsymbol{P}}^{(\mathbf{a})}-W}}{\alpha^{(\mathbf{a})}+\sqrt{x_{\boldsymbol{P}}^{(\mathbf{a})}-W}} ; Y^{(\mathbf{a})}(W)=\frac{\beta^{(\mathbf{a})}-\sqrt{x_{\boldsymbol{Q}}^{(\mathbf{a})}-W}}{\beta^{(\mathbf{a})}+\sqrt{x_{\boldsymbol{Q}}^{(\mathbf{a})}-W}} ; Z^{(\mathbf{a})}(W)=\frac{\gamma^{(\mathbf{a})}-\sqrt{x_{\boldsymbol{R}}^{(\mathbf{a})}-W}}{\gamma^{(\mathbf{a})}+\sqrt{x_{\boldsymbol{R}}^{(\mathbf{a})}-W}} \\
D_{d \boldsymbol{p}}=\sum_{(\mathbf{a})} D_{d \boldsymbol{p}}^{(\mathbf{a})}=\frac{1}{2 N_{\text {data }}} \sum_{\boldsymbol{i}=\mathbf{1}}^{\boldsymbol{N}_{\text {data }}}\left[\left(\frac{\Re T_{(\mathbf{a})}^{f i t}\left(W_{\boldsymbol{i}}\right)-\Re T_{(\mathbf{a})}\left(W_{\boldsymbol{i}}\right)}{\operatorname{Err}_{\boldsymbol{i},(\mathbf{a})}^{\Re}}\right)^{\mathbf{2}}+\left(\frac{\Im T_{(\mathbf{a})}^{\text {fit }}\left(W_{\boldsymbol{i}}\right)-\Im T_{(\mathbf{a})}\left(W_{\boldsymbol{i}}\right)}{\operatorname{Err}_{\mathbf{i},(\mathbf{a})}^{\Im}}\right)\right.
\end{gathered}
$$

Multi/Coupled - channel/multipole... formalism

Outline

Database
PWA
Laurent + Pietarinen (L+P)

$$
\begin{aligned}
& T^{\mathbf{a}}(W)=\sum_{i=1}^{\boldsymbol{k}} \frac{x_{i}^{(\mathbf{a})}+\imath y_{i}^{(\mathbf{a})}}{W_{\boldsymbol{i}}-W}+\sum_{\boldsymbol{k}=\mathbf{1}}^{\boldsymbol{K}} c_{\boldsymbol{k}}^{(\mathbf{a})} X^{(\mathbf{a})}(W)^{\boldsymbol{k}}+\sum_{\boldsymbol{l}=\mathbf{1}}^{\boldsymbol{L}} d_{\boldsymbol{l}}^{(\mathbf{a})} Y^{(\mathbf{a})}(W)^{\boldsymbol{I}}+\sum_{\boldsymbol{m}=\mathbf{1}}^{\boldsymbol{M}} e_{\boldsymbol{m}}^{(\mathbf{a})} Z^{(\mathbf{a})}(W)^{\boldsymbol{m}} \\
& X^{(\mathbf{a})}(W)=\frac{\alpha^{(\mathbf{a})}-\sqrt{x_{\boldsymbol{P}}^{(\mathbf{a})}-W}}{\alpha^{(\mathbf{a})}+\sqrt{x_{\boldsymbol{P}}^{(\mathbf{a})}-W}} ; Y^{(\mathbf{a})}(W)=\frac{\beta^{(\mathbf{a})}-\sqrt{x_{\boldsymbol{Q}}^{(\mathbf{a})}-W}}{\beta^{(\mathbf{a})}+\sqrt{x_{\boldsymbol{Q}}^{(\mathbf{a})}-W}} ; Z^{(\mathbf{a})}(W)=\frac{\gamma^{(\mathbf{a})}-\sqrt{x_{\boldsymbol{R}}^{(\mathbf{a})}-W}}{\gamma^{(\mathbf{a})}+\sqrt{x_{\boldsymbol{R}}^{(\mathbf{a})}-W}} \\
& D_{d \boldsymbol{p}}=\sum_{(\mathbf{a})} D_{d \boldsymbol{p}}^{(\mathbf{a})}=\frac{1}{2 N_{\text {data }}} \sum_{i=1}^{\boldsymbol{N}_{\text {data }}}\left[\left(\frac{\Re T_{(\mathbf{a})}^{\text {fit }}\left(W_{\boldsymbol{i}}\right)-\Re T_{(\mathbf{a})}\left(W_{\boldsymbol{i}}\right)}{\operatorname{Err}_{\boldsymbol{i},(\mathbf{a})}^{\Re}}\right)^{2}+\left(\frac{\Im T_{(\mathbf{a})}^{\text {fit }}\left(W_{\boldsymbol{i}}\right)-\Im T_{(\mathbf{a})}\left(W_{\boldsymbol{i}}\right)}{\operatorname{Err}_{\boldsymbol{i},(\mathbf{a})}^{\Im}}\right)\right.
\end{aligned}
$$

Multi/Coupled - channel/multipole... formalism

Outline

Database
PWA
Laurent + Pietarinen (L+P)

The generalization of $L+P$ method to $M C L+P$ is performed in the following way:

- Separate Laurent expansions and Pietarinen series for each channel/multipole;
- Pole positions are the same for all channels/multipoles,

$$
\begin{aligned}
& T^{\mathbf{a}}(W)=\sum_{i=1}^{k} \frac{x_{i}^{(\mathbf{a})}+\imath y_{i}^{(\mathbf{a})}}{W_{i}-W}+\sum_{k=1}^{K} c_{k}^{(\mathbf{a})} X^{(\mathbf{a})}(W)^{\boldsymbol{k}}+\sum_{l=1}^{L} d_{l}^{(\mathbf{a})} Y^{(\mathbf{a})}(W)^{\boldsymbol{I}}+\sum_{\boldsymbol{m}=1}^{M} e_{m}^{(\mathbf{a})} Z^{(\mathbf{a})}(W)^{\boldsymbol{m}} \\
& X^{(\mathbf{a})}(W)=\frac{\alpha^{(\mathbf{a})}-\sqrt{x_{\boldsymbol{P}}^{(\mathbf{a})}-W}}{\alpha^{(\mathbf{a})}+\sqrt{x_{\boldsymbol{P}}^{(\mathbf{a})}-W}} ; Y^{(\mathbf{a})}(W)=\frac{\beta^{(\mathbf{a})}-\sqrt{x_{\boldsymbol{Q}}^{(\mathbf{a})}-W}}{\beta^{(\mathbf{a})}+\sqrt{x_{\boldsymbol{Q}}}-W} ; Z^{(\mathbf{a})}(W)=\frac{\gamma^{(\mathbf{a})}-\sqrt{x_{\boldsymbol{R}}^{(\mathbf{a})}-W}}{\gamma^{(\mathbf{a})}+\sqrt{x_{R}^{(\mathbf{a})}-W}} \\
& D_{d p}=\sum_{(\mathbf{a})} D_{d p}^{(\mathbf{a})}=\frac{1}{2 N_{\text {data }}} \sum_{i=\mathbf{1}}^{N_{\text {data }}}\left[\left(\frac{\Re T_{(\mathbf{a})}^{f i t}\left(W_{\boldsymbol{i}}\right)-\Re T_{(\mathbf{a})}\left(W_{\mathbf{i}}\right)}{\operatorname{Err}_{\mathbf{i},(\mathbf{a})}^{\Re}}\right)^{\mathbf{2}}+\left(\frac{\Im T_{(\mathbf{a})}^{\mathrm{fit})}\left(W_{\mathbf{i}}\right)-\Im T_{(\mathbf{a})}\left(W_{\mathbf{i}}\right)}{\operatorname{Err}_{\mathbf{i},(\mathbf{a})}^{\Im}}\right)\right.
\end{aligned}
$$

Multi/Coupled - channel/multipole... formalism

Outline

Database
PVA
Laurent + Pietarinen (L+P)

The generalization of $L+P$ method to $M C L+P$ is performed in the following way:

- Separate Laurent expansions and Pietarinen series for each channel/multipole;
- Pole positions are the same for all channels/multipoles,
- Residua and all Pietarinen coefficients free;

$$
\begin{aligned}
& T^{\mathbf{a}}(W)=\sum_{i=1}^{k} \frac{x_{i}^{(\mathbf{a})}+\imath y_{i}^{(\mathbf{a})}}{W_{i}-W}+\sum_{k=1}^{K} c_{k}^{(\mathbf{a})} X^{(\mathbf{a})}(W)^{\boldsymbol{k}}+\sum_{l=1}^{L} d_{l}^{(\mathbf{a})} Y^{(\mathbf{a})}(W)^{\boldsymbol{I}}+\sum_{\boldsymbol{m}=1}^{M} e_{\boldsymbol{m}}^{(\mathbf{a})} Z^{(\mathbf{a})}(W)^{\boldsymbol{m}} \\
& X^{(\mathbf{a})}(W)=\frac{\alpha^{(\mathbf{a})}-\sqrt{x_{\boldsymbol{P}}^{(\mathbf{a})}-W}}{\alpha^{(\mathbf{a})}+\sqrt{x_{\boldsymbol{P}}^{(\mathbf{a})}-W}} ; Y^{(\mathbf{a})}(W)=\frac{\beta^{(\mathbf{a})}-\sqrt{x_{\boldsymbol{Q}}^{(\mathbf{a})}-W}}{\beta^{(\mathbf{a})}+\sqrt{x_{\boldsymbol{Q}}}-W} ; Z^{(\mathbf{a})}(W)=\frac{\gamma^{(\mathbf{a})}-\sqrt{x_{\boldsymbol{R}}^{(\mathbf{a})}-W}}{\gamma^{(\mathbf{a})}+\sqrt{x_{R}^{(\mathbf{a})}-W}} \\
& D_{d p}=\sum_{(\mathbf{a})} D_{d p}^{(\mathbf{a})}=\frac{1}{2 N_{\text {data }}} \sum_{i=\mathbf{1}}^{N_{\text {data }}}\left[\left(\frac{\Re T_{(\mathbf{a})}^{f i t}\left(W_{\mathbf{i}}\right)-\Re T_{(\mathbf{a})}\left(W_{\mathbf{i}}\right)}{\operatorname{Err}_{\mathbf{i},(\mathbf{a})}^{\Re}}\right)^{\mathbf{2}}+\left(\frac{\Im T_{(\mathbf{a})}^{\mathrm{fit})}\left(W_{\mathbf{i}}\right)-\Im T_{(\mathbf{a})}\left(W_{\mathbf{i}}\right)}{\operatorname{Err}_{\mathbf{i},(\mathbf{a})}^{\Im}}\right)\right.
\end{aligned}
$$

Multi/Coupled - channel/multipole... formalism

Outline

Database
PWA
Laurent + Pietarinen (L+P)

The generalization of $L+P$ method to $M C L+P$ is performed in the following way:

- Separate Laurent expansions and Pietarinen series for each channel/multipole;
- Pole positions are the same for all channels/multipoles,
- Residua and all Pietarinen coefficients free;
- Branch-points exactly as for the single-channel model;

$$
\begin{aligned}
& T^{\mathbf{a}}(W)=\sum_{i=1}^{k} \frac{x_{i}^{(\mathbf{a})}+\imath y_{i}^{(\mathbf{a})}}{W_{i}-W}+\sum_{k=1}^{K} c_{k}^{(\mathbf{a})} X^{(\mathbf{a})}(W)^{\boldsymbol{k}}+\sum_{l=1}^{L} d_{l}^{(\mathbf{a})} Y^{(\mathbf{a})}(W)^{\boldsymbol{I}}+\sum_{\boldsymbol{m}=1}^{M} e_{m}^{(\mathbf{a})} Z^{(\mathbf{a})}(W)^{\boldsymbol{m}} \\
& X^{(\mathbf{a})}(W)=\frac{\alpha^{(\mathbf{a})}-\sqrt{x_{P}^{(\mathbf{a})}-W}}{\alpha^{(\mathbf{a})}+\sqrt{x_{\boldsymbol{P}}^{(\mathbf{a})}-W}} ; Y^{(\mathbf{a})}(W)=\frac{\beta^{(\mathbf{a})}-\sqrt{x_{\boldsymbol{Q}}^{(\mathbf{a})}-W}}{\beta^{(\mathbf{a})}+\sqrt{x_{\boldsymbol{Q}}^{(\mathbf{a}}-W}-W} ; Z^{(\mathbf{a})}(W)=\frac{\gamma^{(\mathbf{a})}-\sqrt{x_{R}^{(\mathbf{a})}-W}}{\gamma^{(\mathbf{a})}+\sqrt{x_{R}^{(\mathbf{a})}-W}} \\
& D_{d p}=\sum_{(\mathbf{a})} D_{d p}^{(\mathbf{a})}=\frac{1}{2 N_{\text {data }}} \sum_{i=\mathbf{1}}^{N_{\text {data }}}\left[\left(\frac{\Re T_{(\mathbf{a})}^{f i t}\left(W_{\mathbf{i}}\right)-\Re T_{(\mathbf{a})}\left(W_{\mathbf{i}}\right)}{\operatorname{Err}_{\mathbf{i}, \mathbf{(a)}}^{\Re}}\right)^{2}+\left(\frac{\Im T_{(\mathbf{a})}^{f i t}\left(W_{\mathbf{i}}\right)-\Im T_{(\mathbf{a})}\left(W_{\mathbf{i}}\right)}{\operatorname{Err}_{\mathbf{i},(\mathbf{a})}^{\Im}}\right)\right.
\end{aligned}
$$

Multi/Coupled - channel/multipole... formalism

Outline

Database

Laurent + Pietarinen (L+P)

The generalization of $L+P$ method to $M C L+P$ is performed in the following way:

- Separate Laurent expansions and Pietarinen series for each channel/multipole;
- Pole positions are the same for all channels/multipoles,
- Residua and all Pietarinen coefficients free;
- Branch-points exactly as for the single-channel model;
- Generalize the single-channel discrepancy function $D_{d p}^{a}$

$L+P$ fits

Solution 16a

Database
PWA
Laurent + Pietarinen (L+P)

$L+P$ fits

Solution 16a

Outline

Database
PWA
Laurent + Pietarinen (L+P)

$L+P$ fits

Solution 16a

E1p \& M1p
Outline
Database
PWA
Laurent + Pietarinen (L+P)

Resonance	$\operatorname{Re} W_{p}$	$-2 \operatorname{lm} W_{p}$	\mid residue	θ
$N(1720) 3 / 2^{+}$	1671_{-26}^{+30}	356_{-50}^{+52}		112
			291	-40

Conclusion

Outline

Database
PWA
Laurent + Pietarinen (L+P)

