Background, simulation and analysis Light hadrons Charmonium Open charm Beauty Summary and outlook

Hadrons at high T

Jon-Ivar Skullerud with special thanks to Aoife Kelly, Eoghan Murphy, Ryan Quinn

National University of Ireland Maynooth FASTSUM collaboration

THOR meeting, Istanbul, 6 Sep 2019

Outline

Background, simulation and analysis

Light hadrons

Charmonium

Open charm

Beauty

Summary and outlook

Hadrons at high T

- ▶ Light hadron masses essential ingredient in HRG
- ▶ Long history of $c\bar{c}$ studies: experiment, pheno, lattice
- ightharpoonup Sequential $b\bar{b}$ suppresion observed, numerous studies
- Open charm still in its infancy

Dynamical anisotropic lattices

- A large number of points in time direction required to extract spectral information
- ▶ For $T = 2T_c$, $\mathcal{O}(10)$ points $\Longrightarrow a_t \sim 0.025$ fm
- ▶ Far too expensive with isotropic lattices $a_s = a_t!$
- Fixed-scale approach
 - vary T by varying N_{τ} (not a)
 - need only 1 T=0 calculation for renormalisation
 - independent handle on temperature

- Introduces 2 additional parameters
- Non-trivial tuning problem
 [PRD 74 014505 (2006); HadSpec Collab, PRD 79 034502 (2009)]

Simulation parameters

FASTSUM Gen2 ensemble: $N_f = 2 + 1$ anisotropic clover [HadSpec, PRD **79** 034502 (2009); FASTSUM, JHEP **1502** 186 (2015)]

ξ	3.5	
a_s (fm)	0.123	
a_{τ}^{-1} (GeV)	5.63	
m_{π} (MeV)	380	
$m_\pi/m_ ho$	0.45	
N_s	24	
L_s (fm)	2.94, 3.94	

$N_{ au}$	T (MeV)	T/T_c	$N_{\rm cfg}$
128	44	0.24	500
48	117	0.63	250
40	141	0.76	500
36	156	0.84	500
32	176	0.95	1000
28	201	1.09	1000
24	235	1.27	1000
20	281	1.52	1000
16	352	1.90	1000

Charm action params from Hadspec: JHEP 1207 126 (2012)

- contain information about the fate of hadrons in the medium
 - stable states $\rho(\omega) \sim \delta(\omega m)$
 - resonances or thermal width $\rho(\omega) \sim$ lorentzian
 - continuum above threshold

- contain information about the fate of hadrons in the medium
 - stable states $\rho(\omega) \sim \delta(\omega m)$
 - resonances or thermal width $\rho(\omega) \sim$ lorentzian
 - continuum above threshold

- contain information about the fate of hadrons in the medium
 - stable states $\rho(\omega) \sim \delta(\omega m)$
 - resonances or thermal width $\rho(\omega) \sim$ lorentzian
 - continuum above threshold
- ▶ $ρ_{\Gamma}(ω, \vec{p})$ related to euclidean correlator $G_{\Gamma}(\tau, \vec{p})$ according to

$$G_{\Gamma}(\tau, \vec{p}) = \int \rho_{\Gamma}(\omega, \vec{p}) K(\tau, \omega) d\omega \,, \quad K(\tau, \omega) = \frac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)}$$

- ▶ an ill-posed problem requires a large number of time slices
 - Fit to physically motivated Ansatz
 - Use Maximum Entropy Method or other Bayesian methods
 - Other inversion methods, eg Backus–Gilbert, Cuniberti

Spectral function reconstruction

Spectral function $\rho(\omega)$ is expressed in terms of default model $m(\omega)$

$$\rho(\omega) = m(\omega) \exp\left[\sum_{k=1}^{N_b} b_k u_k(\omega)\right]$$

Singular value decomposition:

$$K(\omega, \tau) \to K(\omega_i, \tau_j) = K_{ij} = U \Xi V^T$$

Standard MEM (SVD basis): u_k are column vectors of U:

 $N_b = N_s \leq N_{\text{data}}$

Fourier basis: use N_b Fourier modes as u_k

BR method: Alternative prior instead of Shannon-Jaynes entropy:

$$S = \alpha \int d\omega \left(1 - \frac{\rho}{\omega} + \ln \frac{\rho}{\omega} \right)$$

and use full search space for $\rho(\omega)$

Reconstructed correlators

The systematic uncertainty of the spectral function can be avoided by studying the reconstructed correlator, defined as

$$G_r(\tau; T, T_r) = \int_0^\infty \rho(\omega; T_r) K(\tau, \omega, T) d\omega$$

where K is the kernel

$$K(\tau, \omega, T) = \frac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)}$$

If
$$\rho(\omega; T) = \rho(\omega; T_r)$$
 then $G_r(\tau; T, T_r) = G(\tau; T)$

Small changes in correlators is compatible with large changes in spectral function [Mocsy&Petreczky (2007)]

Direct correlator reconstruction

[Meyer (2010), Ding et al (2012)]

With

$$T = \frac{1}{a_{\tau}N}, \ T_r = \frac{1}{a_{\tau}N_r}, \quad \frac{N_r}{N} = m \in \mathbb{N}$$

and using

$$\frac{\cosh\left[\omega(\tau-N/2)\right]}{\sinh(\omega N/2)} = \sum_{n=0}^{m-1} \frac{\cosh\left[\omega(\tau+nN+mN/2)\right]}{\sinh(\omega mN/2)}$$

we have

$$G_r(\tau; T, T_r) = \sum_{n=0}^{m-1} G(\tau + nN, T_r)$$

Light baryons[PRD92(2015)014503; JHEP1706034; PRD99(2019)074503]

Positive and negative parity states encoded in same correlator

Forward propagating: + parity; Backward propagating: - parity Using smeared (extended) sources to enhance ground state overlaps

Baryon mass modifications

- \triangleright Positive parity ground state masses unaffected by T up to T_c
- Negative parity masses decrease
- ▶ Parity restoration near T_c ?

Hadron resonance gas

Data points from BW collaboration

Note mismatch in quark masses

Agreement with correlator analysis, parity doubling at hit T

Parity restoration

Measure of parity restoration:

$$R(\tau) = \frac{G(\tau) - G\beta - \tau}{G(\tau) + G(\beta + \tau)}$$

$$R = \frac{\sum_{n=0}^{\beta/2 - 1} R(\tau_n) / \sigma^2(\tau_n)}{\sum_{n=0}^{\beta/2 - 1} 1 / \sigma^2(\tau_n)}$$

Parity restoration crossover slightly below deconfinement, consistent with chiral crossover

Light mesons

- Simplistic single-state fit
- ▶ High-T fit ranges
- ► Not shown:
 - two-state fits
 - spectral reconstruction
- Mass reduction or excited state suppression

Charm

- ▶ J/ψ suppression a probe of the quark–gluon plasma? [Matsui & Satz 1986]
- Quantitative results for broadening and melting?
- ▶ To what extent do c quarks thermalise?
- ▶ How reliable are quenched lattice simulations?
- Are potential models valid?

Charmonium: reconstructed correlators

Top: pseudoscalar (η_c) Bottom: vector (J/ψ)

- $T \lesssim T_c$ consistent with no change
- ► Small but significant modifications above *T_c*
- ▶ P-wave analysis in progress

Charmonium spectral functions: S-waves

Comparison with reconstructed correlators

Top: pseudoscalar Bottom: vector

- ► Consistent with no change below *T_c*
- ► Possible weakening or melting for $T \gtrsim 1.5 T_c$

Charmonium spectral functions: P-waves

Data suggest that P-waves dissociate at $T \lesssim T_c$

Why D mesons?

Experimental interest in open heavy flavour in A–A collisions:

Why D mesons?

Open and hidden charm

Cannot study $c\bar{c}$ in isolation from open charm

- Recombination at freeze-out
- ▶ Increased yield of D mesons relative to J/ψ ?

$$\longrightarrow R_{AA}$$
 vs $\frac{[N(J/\psi)/N(D)]_{AA}}{[N(J/\psi)/N(D)]_{pp}}$

- ▶ Thermal modifications of D mesons may be important
- ▶ Charm quark diffusion ↔ D meson flow

Open charm — issues

- Suggestions of D meson survival in QGP?
- Modifications of yields of open charm states?
- ▶ Increased D_s/D ratio (strangeness enhancement)?

Zero temperature spectral functions

Reconstructed correlators

Reconstructed correlators

lacktriangle Significant changes for $T\gtrsim T_c$

- Modifications below T_c
- ightharpoonup Smaller for D_s
- Transport contribution in V channel?

Top: D, Bottom: D^*

Open charm: spectral functions from BR

- Systematic peak shift and weakening
- ► No sign of non-monotonic mass shift
- No qualitative change at T_c?

Spectral functions from reconstructed correlators

Systematic shift and weakening is an effect of the reduced temporal extent!

Comparison of reconstructed and thermal correlators

- No significant modification below T_c
- Clear difference at $T \approx 1.9 T_c$

Comparison of reconstructed and thermal correlators

Significant modifications already around $0.9T_c$

Beauty (and the beast?)

- Many b quarks are produced at LHC
- ► Cold nuclear matter effects, recombination less important → cleaner probes?
- $ightharpoonup T_d^{\gamma} \sim 3-5T_c$ hard to do on the lattice
- ▶ $\chi_b, \Upsilon(2S)$ melt at $T'_d \lesssim 1.2T_c$?
- Sequential suppression observed at CMS (+ ATLAS, STAR)

NRQCD

Scale separation $M_Q\gg T, M_Qv$ Integrate out hard scales \longrightarrow Effective theory Expand in orders of heavy quark velocity \mathbf{v} ; we use $\mathcal{O}(\mathbf{v}^4)$ action Advantages

- lacktriangle No temperature-dependent kernel, $G(au)=\int
 ho(\omega)e^{-\omega au}rac{d\omega}{2\pi}$
- No zero-modes
- Longer euclidean time range
- Appropriate for probes not in thermal equilibrium

Disadvantages

- ▶ Not renormalisable, requires $Ma_s \gtrsim 1$
- Does not incorporate transport properties

Spectral functions — MEM analysis

S-waves

 Υ (2S) melts, but ground state remains robust

P-waves

P-waves dissociate close to T_c

MEM vs BR method

Known discrepancy: BR produces more peak structures [See subsequent discussion by Kim, Petrezcky, Rothkopf]

Summary

- Results for light baryons, (light mesons), open charm, charmonium, beautonium
- Baryons:
 - Observed parity restoration
 - impact on hadron resonance gas
- ► Open charm:
 - thermal modifications already below T_c
 - no bound states above T_c
- ▶ Charmonium:
 - \triangleright no significant modification in S-waves below T_c
 - suggested survival up to $1.5T_c$
- Beautonium:
 - ▶ S wave survival up to $T > 2T_c$, moderate mass shift
 - ▶ P wave dissociation near T_c , still disputed

Outlook

- Complete understanding of systematics
- Towards the physical limit with lighter quarks underway
- ▶ Repeat with smaller a_{τ}
- Open beauty