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The lattice-calculable region of the phase diagram

T

µ

confined

QGP

Color superconductor

Tc

!

Sign problem prohibits direct simulation, circumvented by approximate methods:
reweigthing, Taylor expansion, imaginary chem. pot., need

No critical point in the controllable region, some signals beyond 

µ/T <� 1 (µ = µB/3)

crossover weakens



Effective lattice theory for heavy dense QCDThe effective lattice theory approach I

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  split temporal and spatial link integrations:     

Spatial integration after analytic strong coupling and hopping expansion
                                                                           

Result: 3d spin model of QCD, infinitely many couplings, ordered parametrically

Truncation: valid for heavy quarks, sufficiently close to the continuum

Step II:  sign problem milder: Monte Carlo, complex Langevin

Numerical simulations in 3d without fermion matrix inversion,  very cheap! 

Z =
�

DU0DUi det Q eSg[U ] �
�

DU0e
�Seff [U0] =

�
DL e�Seff [L]

3

Truncation valid for heavy quarks on reasonably fine lattices, a~0.1 fm 

Step II.: mild sign problem of effective theory  

Analytic solution by linked cluster expansion  

O.P.  with Fromm, Langelage, Lottini, Neuman, Glesaaen

⇠ 1

g2
,
1

mq



Effective theory: start from Wilson’s lattice action

+ + �! �!

Figure 1. A graphical representation of the contributions in the strong coupling expansion and
the corresponding terms in the e↵ective action. The first term is the interactions of two nearest
neighbour Polyakov lines and the second one corresponds to the interaction of next-to nearest
neighbours with distance

p
2 on the lattice. From [14].

Here V
i

is related to the Jacobian when transforming the measure dU0(i) ! dL
i

. Usually
the e↵ective couplings are exposed in terms of the fundamental character expansion coe�cient
u = u(�) = �/18 + O(�2), which shows better convergence. The relation between u and � can
be computed to arbitrary precision, hence they can be used synonymously. The leading e↵ective
coupling has been computed to high orders,

�(u,N
⌧
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Note that the next-to-nearest neighbour coupling starts only at �2 ⇠ u2N⌧+2 while the nearest
neighbour coupling of adjoint loops is �

a

⇠ u2N⌧ . Figure 1 illustrates how higher order
contributions arise in terms of additional contributions to the coupling constants of the nearest
neighbour interaction and next to nearest neighbour interactions.

2.2. Numerical results for the one-coupling theory

The e↵ective theory is 3d with complex scalars left as dynamical degrees of freedom,
corresponding to a 3d continuous spin model. It is obvious that this accounts for a drastic
reduction of numerical e↵ort for the simulation. The e↵ective theory exhibits an order-disorder
phase transition corresponding to the spontaneous breaking of the centre symmetry as a function
of its coupling, as shown in Figure 2 (left), which causes the Polyakov loop to rise. A finite size
analysis shows that this rise develops into a discontinuous jump, signalling the first-order nature
of the transition in the infinite volume limit, Figure 2 (right). This can also be seen in the
distribution of the Polyakov loop variable in the critical region. Figure 3 shows the double-peak
distribution of a first-order transition for SU(3) (left), whereas a single Gaussian distribution
moves smoothly as a function of the coupling for SU(2) (right), which has a second-order
continuous transition. Thus the e↵ective theory in its simplest form correctly describes the
order of the SU(N) transition.

Next the location of the phase transition, i.e. the critical coupling �
c

can be translated back
to the lattice gauge coupling � by inverting Equation (6) for every given N

⌧

. The result is
shown in Figure (4) (left) for di↵erent truncations of the series for the e↵ective coupling. The
computed orders are just about high enough for an appreciable convergence to set in. Note,
that a single simulation of the e↵ective theory provides the critical coupling �

c

, the predictions

 =
1

2am+ 8

Generates couplings over all distances, n-pt. couplings, higher reps…. :

Effective one-coupling theory for SU(3) YM
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In this paper we consider the corresponding e�ective theory for general colour gauge
group SU(Nc) in the cold and dense regime. In particular, we analyse the onset transition
to baryon matter as well as the thermodynamic functions for varying and large Nc. This
allows us to establish contact to several conjectures made in the literature regarding the
phase diagram at large Nc [3], with various phenomenological consequences for physical
QCD.

2 QCD with heavy quarks

2.1 E�ective lattice theory

Consider the partition function of lattice QCD with the standard Wilson action at finite
temperature, T = 1/(aN· ), realised by a compact euclidean time dimension with N· slices
and (anti-)periodic boundary conditions for (fermions) bosons. An e�ective theory in terms
of temporal lattice links only is obtained after performing the Gauss integral over the quark
fields and integrating the gauge links in spatial directions,

Z =
⁄

DU
0

DUi det Q e≠Sg [U ] ©
⁄

DU
0

e≠Se� [U0] =
⁄

DW e≠Se� [W ] . (2.1)

With the spatial links gone, the e�ective action depends on the temporal links only via
Wilson lines closing through the periodic boundary, or Polyakov loops,

W (x) =
N·Ÿ

·=1

U
0

(x, ·), L(x) = TrW (x) . (2.2)

This e�ective action is unique and exact. The integration over spatial links causes long-
range interactions of Polyakov loops at all distances and to all powers so that in practice
truncations are necessary. For non-perturbative ways to define and determine truncated
theories, see [5–8]. Here, we use an e�ective theory based on expanding the path integral
in a combined character and hopping parameter series, with interaction terms ordered
according to their leading powers in the coe�cient of the fundamental character u and the
hopping parameter Ÿ,

u(—) = —

18 + —2

216 + . . . < 1, Ÿ = 1
2amq + 8 . (2.3)

The dependence of u on the lattice gauge coupling — = 2Nc/g2 is known to arbitrary
precision, and u is always smaller than one for finite —-values. Since the hopping expan-
sion is in inverse quark mass, the e�ective theory to low orders is valid for heavy quarks
only. Both expansions result in convergent series within a finite radius of convergence [].
Truncating these at some finite order, the integration over the spatial gauge links can be
performed analytically to provide a closed expression for the e�ective theory. Going via an
e�ective action results in a resummation to all powers with better convergence properties
compared to a direct series expansion of thermodynamic observables as in [11, 12]. Since
the Polyakov loop L(x) contains the length N· of the temporal lattice extent implicitly, the
e�ective theory is three-dimensional. Note that in the case of 4d Yang-Mills theory, this

– 2 –

Pure gauge part: character expansion Fermion determinant: hopping expansion
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The effective 3d theory

Including heavy, dynamical Wilson fermions

Accuracy ~5%, predictions for Nt=6,8,... available!

� �2
NLO:

12

Deconfinement transition for heavy quarkseffective couplings SA,S
i = SA,S

i [L,L⇤]

This is a 3d continuous spin model!

cf. Svetitsky-Yaffe conjecture for universality of SU(N) Yang-Mills

representation by a 3d centre-symmetric e�ective theory is the basis for the Svetitsky-Ya�e
conjecture [13].

Including the quark determinant via the hopping expansion introduces centre symmetry
breaking terms and additional e�ective couplings hi [14],

≠S
e�

=
Œÿ

i=1

⁄i(u, Ÿ, N· )Ss
i ≠ 2Nf

Œÿ

i=1

Ë
hi(u, Ÿ, µ, N· )Sa

i + h̄i(u, Ÿ, µ, N· )Sa,†
i

È
. (2.4)

The ⁄i are defined as the e�ective couplings of the Z(3)-symmetric terms Ss
i , whereas the

hi multiply the asymmetric terms Sa
i . In particular, h

1

, h̄
1

are the coe�cients of L, Lú,
respectively, and to leading order correspond to the fugacity of the quarks and anti-quarks,

h
1

= (2Ÿ)N· eaµ(1 + . . .) = e
µ≠m

T (1 + . . .), h̄
1

= (2Ÿ)N· e≠aµ(1 + . . .) = e≠ µ+m
T (1 + . . .)

(2.5)
with m = ln(2Ÿ) the leading-order constituent quark mass in a baryon [? ], while h

2

=
Ÿ2N· /Nc(1 + . . .) is the leading order coe�cient of an L

x

L
y

interaction term. As an
example, we give the partition function including just these simplest interactions,

Z =
⁄

DW
Ÿ

<x,y>

Ë
1 + ⁄(L

x

Lú
y

+ Lú
x

L
y

)
È

(2.6)

◊
Ÿ

x

[1 + h
1

L
x

+ h2

1

Lú
x

+ h3

1

]2Nf [1 + h̄
1

Lú
x

+ h̄2

1

L
x

+ h̄3

1

]2Nf

◊
Ÿ

<x,y>

A

1 ≠ h
2

Tr h
1

W
x

1 + h
1

W
x

Tr h
1

W
y

1 + h
1

W
y

B A

1 ≠ h
2

Tr h̄
1

W †
x

1 + h̄
1

W †
x

Tr h̄
1

W †
y

1 + h̄
1

W †
y

B

◊ . . . .

In this expression the first line represents the pure gauge sector, the second line is the
static determinant and the third line the leading correction from spatial quark hops. This
partition function has a weak sign problem and can be simulated with either reweighting or
complex Langevin methods [14, 15]. Since the e�ective couplings correspond to power series
of the expansion parameters, they are themselves small in the range of validity. Hence,
the e�ective theory can also be treated by linked-cluster expansion methods known from
statistical physics, with results for thermodynamic observables in quantitative agreement
with the numerical ones [16]. In this way, full control over the sign problem is achieved.

2.2 The deconfinement transition

The phase diagram of QCD with heavy quarks is depicted schematically in figure 1. At zero
density, the thermal transition is a first-order deconfinement transition. It is a remnant
of the centre symmetry-breaking transition of the SU(3) pure gauge theory, which gets
weakened by explicitily center-breaking finite quark masses ≥ 1/m. In the e�ective theory,
this corresponds to spontaneous centre breaking at some set of critical couplings ⁄i,c =
⁄i(uc, Ÿc, N· ), hi,c(uc, Ÿc, N· ), which can be determined by numerical simulation. Inversion
of the e�ective couplings then gives predictions for —c(N· ), Ÿc(N· ), which can be compared
with the results from full QCD simulations.

For SU(3)-Yang-Mills theory, the simplest e�ective theory with only a nearest neighbour
coupling (first line in equation (2.6)) correctly reproduces the order of the deconfinement
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Yang-Mills transition by series expansion
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The deconfinement transition for heavy quarks

Including heavy, dynamical Wilson fermions

Accuracy ~5%, predictions for Nt=6,8,... available!
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The fully calculated deconfinement transition
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Cold and dense: static strong coupling limit

T=0:  anti-fermions decouple: 

free baryon gasz0 = 1 + 4h3
1 + h6

1

spin 3/2, 0

Nf = 1 :

Silver blaze phenomenon + Pauli principle: 
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Figure 2. The onset transition in lattice units, eq. (3.4), for κ = 0.01,β = 0 and different

Nτ (left) and for Nτ = 10,β = 0 and different κ (right).

in the original QCD action, is still contained in z0. Another limit of interest is that
of zero temperature. In this case we have

lim
T→0

a4p =

{

0, µ < m
2Nc(aµ− am), µ > m

,

lim
T→0

a3n =

{

0, µ < m
2Nc, µ > m

. (3.7)

Thus we find the so-called silver blaze property, i.e. the thermodynamic functions stay

zero as the chemical potential is raised until it crosses the constituent quark mass.
Then it is possible to excite baryons and the onset phase transition to nuclear matter
takes place. In the static strong coupling limit, this transition is a step function

from zero to saturation density. This step function gets immediately smeared out
to a smooth crossover as soon as a finite temperature (Nτ < ∞) or coupling h2 is

switched on, cf. figure 2.
We can unambiguously identify this transition as baryon condensation by also

looking at the energy density. Away from the static limit, there are non-vanishing

attractive quark-quark (and hence baryon-baryon) interactions parametrised by h2.
These are identified by the quantity

ϵ ≡
e− nBmB

nBmB

=
e

nBmB

− 1 , (3.8)

which gives the energy per baryon minus its rest mass in units of mB. For tem-
peratures approaching zero, this is the binding energy per baryon. In perturbation
theory, the result is

ϵ = −
4

3

1

a3nB

(

z3
z0

)2

κ2 = −
1

3

1

a3nB

(

z3
z0
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e−amM , (3.9)
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1st order phase transition from vacuum to saturated baryon crystal
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Nf = 2 :

3.3 The static strong coupling limit for Nf = 2 at finite baryon density

For β = 0, the partition function consists of the static determinant factors only

Z(β = 0) =
[

∫

[dW ]
∏

x⃗

(1 + huLx⃗ + h2
uL

∗
x⃗ + h3

u)
2(1 + h̄uL

∗
x⃗ + h̄2

uLx⃗ + h̄3
u)

2 (3.10)

(1 + hdLx⃗ + h2
dL

∗
x⃗ + h3

d)
2(1 + h̄dL

∗
x⃗ + h̄2

dLx⃗ + h̄3
d)

2
]V

= zV0 .

We again consider the zero temperature limit at µ > 0, for which the anti-quark
contributions vanish. After the gauge integration the result reads

z0 = (1 + 4h3
d + h6

d) + (6h2
d + 4h5

d)hu + (6hd + 10h4
d)h

2
u + (4 + 20h3

d + 4h6
d)h

3
u

+(10h2
d + 6h5

d)h
4
u + (4hd + 6h4

d)h
5
u + (1 + 4h3

d + h6
d)h

6
u . (3.11)

All exponents of hn
uh

m
d come in multiples of three, n + m = mod 3. Just as in the

one-flavour case (with hd = 0), this has the form of a free baryon gas where the
prefactors give the degeneracy of the spin multiplets. Note that for Nf = 2 we also

find the standard spin 1/2 nucleons and many more combinations. To illustrate the
prefactors, consider the example h2

uhd. There is the spin 1/2 doublet, the proton,

as well as a spin 3/2 quadruplet, the ∆+, i.e. six states altogether. The states
corresponding to h2

dhu are the neutron and the ∆0, while h3
u, h

3
d are the ∆++,∆−

quadruplets, respectively. It continues with six-quark states. For example, h4
uh

2
d has

10 allowed spin-flavour combinations, corresponding to three spin 1 triplets and one
spin 0 singlet. These are consistent with an interpretation as di-baryon states built of

∆++∆0 or pp. Thus, eq. (3.11) contains all baryonic spin-flavour multiplets that are
consistent with the Pauli principle, i.e. up to a maximum of 12 constituent quarks.

The quark density reads

nB =
T

V

∂

∂µB

lnZ

= 2
[

h3
u(2 + h3

u) + hdh
2
u(3 + 4h3

u) + h5
dhu(4 + 9h3

u)

+h4
dh

2
u(10 + 9h3
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d(1 + 5h3
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]

. (3.12)

In the high density limit numerator and denominator are dominated by the term
with the highest power and we obtain

lim
µ→∞

(a3n) = 2 · 2 ·Nc ≡ 4(a3nB,sat) . (3.13)
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Complete spin-flavour structure of baryons (mesons for isospin chemical potential)  
 
                                      Gauge and Lorentz symmetries!

“Di-baryons”: 3 spin 1 triplets, 1 spin 0 singlet,                ,�++�0 pp



Cold and dense regime: onset of baryon matter
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Figure 3. Continuum approach of the baryon number.

extending the range where our effective action is reliable. Fig. 2 (right) shows the same
exercise for the largest  considered in this work, this time increasing the orders of the
character expansion. We observe good convergence up to � ⇠ 6, which is a sufficiently
weak coupling to allow for continuum extrapolations. It is interesting to note that the
convergence properties are not determined by the size of the expansion parameters alone.
Even though the u(�)-values far exceed the -values employed in the figures, convergence
in u(�) appears to be faster. The gain in convergence region by the additional orders in
the effective action can be exploited to study the systematics of our effective theory.

3.2. Continuum approach

An important question for any lattice investigation concerns the continuum limit. Fig. 3
(left) shows the baryon number as a function of chemical potential and highlights a severe
issue of lattice QCD at finite baryon density, irrespective of the sign problem or the accuracy
of effective actions: cut-off effects at finite density cause not only quantitative systematic
errors, but alter the qualitative behaviour of the system. Because of the finite number
of lattice sites available, the Pauli principle leads to a saturation density of nsat

B

= 2N
f

baryons per site, which does not exist in the continuum. Once lattice saturation is reached,
a further increase of chemical potential makes no sense. Thus lattices have to be made
finer before higher densities can be addressed. On finer lattices the saturation density in
physical units grows and in the continuum limit moves to infinity. This lattice artefact
starts to make itself felt already quite early, as is also apparent in the numerical behaviour
of the Polyakov loop [8] and related to the half-filling symmetry of the static action [15].

The difficulty is also reflected in Fig. 3 (right), where the slopes of the continuum ap-
proach rapidly increase with growing chemical potential, such that a continuum extra-
polation is increasingly difficult to control. The figure shows results from our previous
simulations obtained with the 4 action at two values of µ > µ

c

, i.e. beyond the nuclear
onset transition, and compares it with the new 8 action. The baryon density just about
reaches the domain with leading cut-off effects linear in a, which are expected for standard
Wilson fermions. In this context it should prove particularly valuable to work with an im-

– 7 –

Continuum approach  ~a  as expected for Wilson fermions  

Cut-off effects grow rapidly beyond onset transition: lattice saturation!

Finer lattice necessary for larger density!  

Glesaaen, Neuman, O.P., JHEP 15 



Binding energy per nucleon
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Figure 3. Binding energy per nucleon in the strong coupling limit, eq. (3.9) with Nτ = 10.

Quark mass decreases with growing κ.

where we have used the leading order of eq. (2.49) to express the hopping parameter
by the meson mass. This result beautifully illustrates several interesting physics

points. In the non-interacting static limit with κ = h2 = 0, there is no binding
energy and hence no true phase transition for the onset to nuclear matter. For finite

κ we see from the behaviour of z3, z0 that for µ < m and T → 0 the binding energy
is also zero, another manifestation of the silver blaze phenomenon. On the other
hand, for µ > m, T → 0 it is explicitly negative and its absolute value increases with

decreasing meson mass. This is in complete accord with expectations from nuclear
physics models based on meson exchange.

The binding energy as a function of chemical potential is shown in figure 3 (left),
the asymptotes towards larger chemical potential are due to lattice saturation. Plot-

ting against the number density, we obtain the equation of state as qualitatively
expected for nuclear matter, figure 3 (right). In particular, the binding energy per
baryon gets more negative as the quarks get lighter, until we see a minimum forming.

Note that all curves eventually should turn upwards again, but for finite lattice spac-
ing they are limited by the saturation density. With the explicit mass dependence in

the binding energy and without a continuum extrapolation, quantitative predictions
for physical QCD cannot be made until the physical flavour content and masses can

be controlled. Nevertheless, it is interesting to keep in mind the physical binding en-
ergy per nucleon, ϵ ≈ 0.017 and the nuclear saturation density, nB0/m3

proton ≈ 0.016.
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Figure 2. The onset transition in lattice units, eq. (3.4), for κ = 0.01,β = 0 and different

Nτ (left) and for Nτ = 10,β = 0 and different κ (right).

in the original QCD action, is still contained in z0. Another limit of interest is that
of zero temperature. In this case we have

lim
T→0

a4p =

{

0, µ < m
2Nc(aµ− am), µ > m

,

lim
T→0

a3n =

{

0, µ < m
2Nc, µ > m

. (3.7)

Thus we find the so-called silver blaze property, i.e. the thermodynamic functions stay

zero as the chemical potential is raised until it crosses the constituent quark mass.
Then it is possible to excite baryons and the onset phase transition to nuclear matter
takes place. In the static strong coupling limit, this transition is a step function

from zero to saturation density. This step function gets immediately smeared out
to a smooth crossover as soon as a finite temperature (Nτ < ∞) or coupling h2 is

switched on, cf. figure 2.
We can unambiguously identify this transition as baryon condensation by also

looking at the energy density. Away from the static limit, there are non-vanishing

attractive quark-quark (and hence baryon-baryon) interactions parametrised by h2.
These are identified by the quantity

ϵ ≡
e− nBmB

nBmB

=
e

nBmB

− 1 , (3.8)

which gives the energy per baryon minus its rest mass in units of mB. For tem-
peratures approaching zero, this is the binding energy per baryon. In perturbation
theory, the result is

ϵ = −
4

3

1

a3nB

(

z3
z0

)2

κ2 = −
1

3

1

a3nB
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e−amM , (3.9)
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Light quarks: first order transition + endpointNuclear physics

~100 years old, still no fundamental description, Bethe-Weizsäcker droplet model: 

Z

N

Binding energy per nucleon

QFT descriptions: Fetter-Walecka model, Skyrme model, ...

Ab initio Hamiltonian descriptions

New computational avenues in LQCD:

CPU GPU

Here, very old-fashioned approach: BPU!

Biological Processing Unit!

Large densities?     Effective theories!

The effective lattice theory approach I

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  split temporal and spatial link integrations:     

Spatial integration after analytic strong coupling and hopping expansion
                                                                           

Result: 3d spin model of QCD, infinitely many couplings, ordered parametrically

Truncation: valid for heavy quarks, sufficiently close to the continuum

Step II:  sign problem milder: Monte Carlo, complex Langevin

Numerical simulations in 3d without fermion matrix inversion,  very cheap! 

Z =
�

DU0DUi det Q eSg[U ] �
�

DU0e
�Seff [U0] =

�
DL e�Seff [L]

The equation of state for nuclear matter

m� = 20 GeV, T = 10 MeV, a = 0.17 fm

Effect of binding between baryons: 
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Transition is smooth crossover: 

Binding energy per nucleon: � =
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Lighter quarks:  first order + endpoint!
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Light quarks: first order transition + endpoint
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-2

 0

 2

 4

 6

 8

 10

 12

 14

0.99924 0.99925 0.99926 0.99927 0.99928 0.99929 0.99930 0.99931 0.99932 0.99933 0.99934
<n

>

µ / Mq

T = 0.25 MeV

density jumps:
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Two-step treatment: 
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II. Simulate effective theory  
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Spatial integration after analytic strong coupling and hopping expansion
                                                                           

Result: 3d spin model of QCD, infinitely many couplings, ordered parametrically

Truncation: valid for heavy quarks, sufficiently close to the continuum

Step II:  sign problem milder: Monte Carlo, complex Langevin

Numerical simulations in 3d without fermion matrix inversion,  very cheap! 
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decreases with growing quark mass
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QCD at large Nc

suppresses quark loops in Feynman diagrams

mesons are free;  
corrections: cubic interactions                  ,  quartic int. 

meson masses 

baryons:        quarks,  baryon masses 

baryon interactions: 

Definition, ’t Hooft 1974 : Nc �! 1, g

2
Nc = const.

⇠ 1/Nc⇠ 1/
p

Nc

⇠ ⇤QCD

Nc ⇠ Nc⇤QCD

⇠ Nc Witten 1979 



Implications on the phase diagram

McLerran, Pisarski 07:

To illustrate how quarks enter at large Nc, consider the gluon self energy
at nonzero T and µ. To lowest order in g2, at zero momentum this is gauge
independent, equal to the square of the Debye mass. For Nf massless flavors,
its trace equals

Πµµ(0) = g2

((
Nc +

Nf

2

)
T 2

3
+

Nfµ2

2π2

)
, (1)

Taking Nc → ∞, holding g2Nc fixed, we see that the gluon contribution,
∼ g2NcT 2 ∼ T 2, survives. This is the first in an infinite series of planar, gluon
diagrams at infinite Nc. In contrast, whether for T ̸= 0 and µ ̸= 0, the quark
contribution is only ∼ g2, and so suppressed by ∼ 1/Nc.

This is true order by order in perturbation theory, both in vacuum and
for all T and µ ∼ 1: holding Nf fixed as Nc → ∞, the effects of quarks
loops are suppressed by ∼ 1/Nc [1,2]. This is simply because there are ∼ N2

c

gluons in the adjoint representation, but only ∼ Nc quarks in the fundamental
representation. Since the quark contribution, relative to that of gluons, is
∼ Nf/Nc, it is essential to hold Nf fixed as Nc → ∞; i.e., to take of limit of
large Nc, but small Nf .

In this limit, we can immediately make some broad conclusions about the
phase diagram in the T −µ plane. At µ = 0, one expects that the deconfining
transition temperature Td ∼ ΛQCD [4], which appears to be confirmed by
numerical simulations on the lattice [5]. Since quarks don’t affect the gluons,
the deconfining transition temperature is then independent of µ, Td(µ) = Td(0)
for values of µ ∼ 1. This is illustrated in fig. (1): in the plane of T and µ,
the phase boundary for deconfinement is a straight line. The theory is in a
deconfined phase when T > Td, and in a confined phase for T < Td.

Fig. 1. Phase diagram at infinite Nc in the plane of temperature and quark chemical
potential. The blue line in the quarkyonic phase indicates a guess for the position
of the chiral phase transition.

In fact, consider the “box” in the lower, left hand corner of the T − µ

4

large Nc

Fig. 2. Possible phase diagram for QCD in the plane of temperature and baryon
chemical potential. The blue line in the quarkyonic phase indicates the chiral phase
transition. There is a critical end point for deconfinement.

A possible phase diagram is drawn in fig. (2); following phenomenology
[14], we plot this as as a function of the temperature and the baryon chemical
potential, µB. If large Nc is a reasonable guide to Nc = 3, this should look
something like fig. (1), except that the sharp edges are smoothed out. For
example, below the mass threshold, Td should change little with µ; this appears
to be true from numerical simulations on the lattice [18]. Similarly, at large
Nc nuclear matter rapidly goes from a dilute phase, to one which is dense and
quarkyonic. We indicate this in the figure by drawing the quarkyonic phase
slightly above MN , the nucleon mass.

We expect that the chiral phase transition occurs in the quarkyonic phase,
well above the mass threshold. For QCD, at present numerical simulations
on the lattice indicate that for small µ, the deconfining and chiral transitions
coincide, and are crossover. A chiral critical end point may exist in the plane
of T and µB [13]. One might conjecture that if such a critical end point
exists, that the deconfining and chiral transitions split from one another at
that point.

Speculating in this manner, in the quarkyonic phase, the latent heat asso-
ciated with the chiral transition might be relatively small. Certainly at large
Nc, the large increase in pressure, ∼ Nc, is not tied to the chiral transition.
The behavior of the chiral transition is very sensitive to the number of flavors,
and possible restoration of the axial U(1) symmetry, though.

Consider the deconfining phase transition, after it splits from the chiral
transition. At fixed µ, as T increases, one goes from a confined phase of
parity doubled baryons, to one of quarks and gluons. Deconfinement could
either remain crossover, or perhaps become first order again (from the splitting
point?). If it does turn first order, it will then have to end in a critical end
point, now for deconfinement. Alternately, a first order deconfining transition
could perist down to zero temperature. We indicate this uncertainty by the

16

QCD, conjectured

p ⇠ N0
c

p ⇠ N2
c

p ⇠ Nc
2

and develop a simple model for the EOS.
The key elements of the Quarkyonic picture are il-

lustrated in Fig. 1. Here fQ is momentum distribution

�B/3

quarks baryons
MQ � MN /3

quarks baryons

fQ(k)

EQ(k)

kB/3kQ

k

Fermi Sea of 
Quarks

kFQ

Fermi Shell of  
Baryons

�k F
= �

FIG. 1. The schematic shows the distribution of momentum
and energy of quarks and baryons. The di↵use distribution
of quarks in the right upper graph indicates they are confined
inside baryons.

function or quarks and EQ is their energy. The momen-
tum distribution is smeared at the surface because these
quarks are confined inside baryons which fill states with
momentum width �. Since baryons occupy states near
the Fermi surface they produce a gap in the quark excita-
tion spectrum. The absence of low energy quark excita-
tions will have implications for the transport properties
which we discuss later.

At extremely high density, Quarkyonic Matter is in-
ferred from the properties of QCD when Nc is large. In
this limit confining forces are important when the De-
bye screening mass generated by quark loops is less than
the confinement scale ⇤QCD. Since the color Debye mass
mD ' gµQ where µQ is quark chemical potential and
g is the gauge coupling, by noting that g2Nc is held
fixed when taking the large Nc limit we can conclude
that quarks are confined into baryons for µ .

p
Nc⇤QCD.

This observation that quark matter remains confined up
to a quark chemical potential parametrically large (by
the factor

p
Nc) compared to the confinement scale is

the central tenet of the Quarkyonic picture [19].
To realize these ideas in a concrete example we will

consider symmetric matter characterized by a finite
baryon chemical potential µB and the isospin chemical
potential µI = 0. Further, we assume that chiral symme-
try remains broken to set the quark mass MQ = MN/Nc

as in the constituent quark model, and the quark chemi-
cal potential µQ = µB/Nc. In the absence of interactions,
nucleons will appear in the ground state when µB > MN

and their number density will increase with µB until the
Fermi momentum kFB & ⇤QCD. Because MN is large, at
first, the nucleon number density increases rapidly with
µB . However, when quarks appear, and occupy low mo-
mentum states below the shell, the growth of the baryon

density with µB is reduced. In this model the baryon
number density

nB =
2

3⇡2

�
k3FB � (kFB ��)3 + k3FQ

�
, (2)

where kFB is the Fermi momentum of nucleons and the
Fermi momentum of quarks

kFQ =
(kFB ��)

Nc
⇥(kFB ��) . (3)

so that the contribution of quarks relative to nucleons is
suppressed by 1/N3

c . The energy density is given by

✏(nB) = 4

Z kFB

NckFQ

d3k

(2⇡)3
p

k2 +M2
n ,

+ 2⇥Nc

Z kFQ

0

d3k

(2⇡)3

q
k2 +M2

q . (4)

The chemical potential and pressure are obtained from
the familiar thermodynamic relations µB = @✏/@nB and
P = �✏+ µBnB , respectively.
From Eq. 2 we see that nB increases less rapidly in

the Quarkyonic phase. The resulting suppression of the
susceptibility �B = dnB/dµB leads to a rapid increase
in the speed of sound and is shown as the solid blue
curve in Fig. 2. The dashed blue curve shows c2s in non-
interacting nuclear matter for density nB . 3n0. The
black curves correspond to asymmetric matter containing
only neutrons and will be discussed later.
In our model we assume the thickness of quark Fermi

surface where nucleons reside to be given by

� =
⇤3

k2FB
+ 

⇤

N2
c

(5)

This choice is not entirely arbitrary. The first term
ensures that the nucleon density approximately satu-
rates when baryons dominate, and the second term is
needed to ensure that c2S < 1. It is useful to note
that when ⇤ < kFB < Nc⇤ the density of nucleons
nN / k2FB� ⇡ ⇤3 and when kFB > Nc⇤ the nucleon
density nN / k2FB� ⇡ ⇤k2Q. We set ⇤ = 300MeV
and  = 0.3 to obtain the results shown in Fig. 2. The
rapid increase in the sound velocity for kFB & ⇤ is a
robust prediction of the Quarkyonic phase but its evolu-
tion with density depends sensitively on the details. For
our ansatze the location of the maximum of cS is largely
determined by ⇤ and its magnitude depends both on ⇤
and .
The transition from nuclear matter to the Quarkyonic

phase is second-order in our simple model. The speed of
sound is continuous but its derivative is not. As quarks
appear, pressure remains a smooth, but a more rapidly
increasing function of the energy density. Quite the op-
posite of the behavior encountered in simple models of
the quark-hadron transition, where the transition from

Quarkyonic matter:

can smoothly vary from baryons to quark matter



The effective theory for large 

Recalculate for general      ,  start with strong coupling limit, need new SU(N) integrals! Nc

Static determinant: 

This determinant vanishes for q > 0 _ q < �2Nf , so from now on we write p = �q. To evaluate this determinant
we employ the techniques described in [2] to obtain an expression for

det
1i,jN

✓✓
A

Li � j

◆◆
. (28)

At first, we clear out all denominators

det
1i,jN

✓✓
A

Li � j

◆◆
= (�1)(

n
2)

NY

i=1

A!

(Li � 1)!(A� Li + n)!
det

1i,jn

0

@
nY

k=j+1

(Li � k �A)

jY

k=2

(Li � k + 1)

1

A.

(29)
Lemma 3 in [2] states that

det
1i,jN

0

@
NY

k=j+1

(Xi +Ak)

jY

k=2

(Xi +Bk)

1

A =
Y

1i<jN

(Xi �Xj)
Y

2ijn

(Bi �Aj), (30)

making the indentifications Xi = Li, Ak = �k �A and Bk = �k + 1 leads to

det
1i,jN

✓✓
A

Li � j

◆◆
= (�1)(

N
2 )

NY

i=1

(A+N � i)Li�i

(Li � 1)!

Y

1i<jN

(Li � Lj), (31)

where we have introduced the underline notation for the falling factorials

nk = n · (n� 1) · · · (n� k + 1). (32)

Up to a relative sign, eq. (31) is a special case of eq. (3.13) in [2], which has been proven in [3]. Indeed, eq. (3.13)
from [2] can be used to evaluate the determinant in (27), however, eq. (31) can be applied to the calculation of
determinants which come up when going beyond the static determinant. Setting A = 2Nf and Li = i + p in
eq. (31) and noting

Y

1i<jN

(i� j) = (�1)(
n
2)

NY

j=2

j�1Y

i=1

(j � i) (33)

= (�1)(
n
2)

N�1Y

j=1

j! (34)

we obtain

det
1i,jN

✓✓
2Nf

i� j + p

◆◆
=

NY

i=1

(i� 1 + 2Nf )
p

(i� 1 + p)p
(35)

=

pY

i=1

(i� 1 + 2Nf � p+N)2Nf�p

(i� 1 + 2Nf � p)2Nf�p , (36)

where the second line is especially advantageous for large N and small Nf . Summarizing these results one
obtains

Z

SU(N)

dU det(1 + h
1

U)
2Nf =

NfX

p=0

 
pY

i=1

(i� 1 + 2Nf � p+N)2Nf�p

(i� 1 + 2Nf � p)2Nf�p

!⇣
hpN
1

+ h
(2Nf�p)N
1

⌘✓
1�

�p,Nf

2

◆
. (37)

3 Calculation of corrections

To calculate the first correction from the hopping expansion one needs to evaluate the integral
Z

SU(N)

dU det(1 + h
1

U)
2Nf tr

✓
h
1

U

1 + h
1

U

◆
=
X

q2Q

Z

U(N)

dU det(U)
q
det(1 + h

1

U)
2Nf tr

✓
h
1

U

1 + h
1

U

◆
. (38)

In diagonal form, the integrand reads

NY

i=1

(1 + h
1

zi)
2Nf zqi

NX

µ=1

h
1

zµ
1 + h

1

zµ
=

NX

µ=1

0

@
Y

i 6=µ

(1 + h
1

zi)
2Nf zqi

1

A(1 + h
1

zµ)
2Nf�1h

1

zq+1

µ . (39)

3

And corrections: 

Although the integrand does not factorize with respect to the integration variables, we can apply eq. (14) and
then use the same logic which led to eq. (17) to arrive at

Z

U(N)

dU det(U)
q
det(1 + h

1

U)
2Nf tr

✓
h
1

U

1 + h
1

U

◆
= h

1

NX

µ=1

det
1i,jN

"(�
2Nf�1

i�j�q�1

�
hi�j�q�1

1

if i = µ�
2Nf

i�j�q

�
hi�j�q
1

else

#
. (40)

We currently do not know how to evaluate these determinants directly, so we choose an alternative approach.
A simple application of Jacobi’s formula shows that for h

1

6= 1 one has

@

@h
1

det(1 + h
1

U)
2Nf =

2Nf

h
1

det(1 + h
1

U)
2Nf tr

✓
h
1

U

1 + h
1

U

◆
(41)

and therefore

Z

U(N)

dU det(U)
q
det(1 + h

1

U)
2Nf tr

✓
h
1

U

1 + h
1

U

◆
=

2NfX

p=0

det
1i,jN

✓
2Nf

i� j + p

◆�
pN

2Nf
hpN
1

, (42)

where the determinant on the right hand side of the equation is the same as in the static case.
The next class of integrals that have to be solved to get higher order corrections are for n,m � 1:

Z

SU(N)

dU det(1 + h
1

U)
2Nf tr

✓
(h

1

U)n

(1 + h
1

U)m

◆
. (43)

Upon expanding the denominator in the trace (and therefore assuming |h
1

| < 1) one can use the same strategy
as for the static determinant to obtain

Z

SU(N)

dU det(1 + h
1

U)
2Nf tr

✓
(h

1

U)n

(1 + h
1

U)m

◆

=

2Nf+1X

p=0

NX

µ=1

u+p�mX

r=max(0,µ�m)

(�1)r
✓
r + n� 1

r

◆
hNp
1

det
1i,jN

"(�
2Nf

i�j+p�m�r

�
if i = µ�

2Nf

i�j+p

�
else

#
(44)

=

2Nf+1X

p=0

NX

µ=1

u+p�mX

r=max(0,µ�m)

(�1)r+µ+1

✓
r + n� 1

r

◆
hNp
1

(r +m+N � µ)N

(r +m)(N � µ)!

⇥ (2Nf +N � µ)p�r�m

(µ+ p� r �m� 1)

Y

i 6=µ

(2Nf +N � i)p

(i+ p� 1)p
(45)

= h
N(2Nf+1)

1

2Nf+N�mX

r=max(0,N�m)

(�1)r+N+1

✓
N + r � 1

r

◆
(r +m� 1)N�1

(2Nf )
2Nf+1�r�m

(N + 2Nf � r �m)

+

2NfX

p=0

hNp
1

det
1i,jN

✓
2Nf

i� j + p

◆� NX

µ=1

µ+p�mX

r=max(0,µ�m)

(�1)r
✓
r + n� 1

r

◆

⇥ (�1)µ+1

r +m

(r +m+N � µ)r+m

(r +m� µ)!(µ� 1)!

(µ+ p� 1)r+m

(N + 2Nf � p+ r +m� µ)r+m . (46)

4 Observables for Nf = 2

Including the first correction from the hopping expansion the free energy density reads

w = log(z
0

) +
2Nt

N
(�6Nf )

✓
z
11

z
0

◆
2

, (47)

where

z
0

=

Z

SU(N)

dU det(1 + h
1

U)
2Nf , (48)

z
11

=

Z

SU(N)

dU det(1 + h
1

U)
2Nf tr

✓
h
1

U

1 + h
1

U

◆
. (49)
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Although the integrand does not factorize with respect to the integration variables, we can apply eq. (14) and
then use the same logic which led to eq. (17) to arrive at
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We currently do not know how to evaluate these determinants directly, so we choose an alternative approach.
A simple application of Jacobi’s formula shows that for h
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6= 1 one has
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and therefore
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where the determinant on the right hand side of the equation is the same as in the static case.
The next class of integrals that have to be solved to get higher order corrections are for n,m � 1:
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. (43)

Upon expanding the denominator in the trace (and therefore assuming |h
1

| < 1) one can use the same strategy
as for the static determinant to obtain

Z

SU(N)

dU det(1 + h
1

U)
2Nf tr

✓
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4 Observables for Nf = 2

Including the first correction from the hopping expansion the free energy density reads

w = log(z
0
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N
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where

z
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Results for Nf = 2 :

Specifically, for Nf = 2 one obtains

z
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From this one can easily obtain quantities like pressure density
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The derivative of  with respect to a is computed at constant baryon mass, which is given to first order in  by

mB = �N log(2), (59)

resulting in

a
@

@a
=  log(2). (60)

For low temperatures, the binding energy per baryon can be obtained via

✏ =
e� nBmB
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=
e
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� 1 (62)

4.1 Asymptotic Analysis for N ! 1
We split the free energy into the static part and the contribution from the correction:

w = w
0

+ 2w
1

, (63)

and do the same for the observables. The large N behaviour of the observables depends on the range of the
chemical potential:
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Curious: spin degeneracy of a baryon determined by N!

Static determinant:

Specifically, for Nf = 2 one obtains
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The derivative of  with respect to a is computed at constant baryon mass, which is given to first order in  by
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The derivative of  with respect to a is computed at constant baryon mass, which is given to first order in  by
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Correction:



Thermodynamic functions for large 

Order hopping expansion Ÿ

0
Ÿ

2
Ÿ

4

h1 < 1

a

4
p ≥ 1

6N·
N

3
c h

Nc
1 ≥ ≠ 1

48N

7
c h

2Nc
1 ≥ 3N· Ÿ4

800 N

8
c h

2Nc
1

a

3
nB ≥ 1

6N

3
c h

Nc
1 ≥ ≠N·

24 N

7
c h

2Nc
1 ≥ (9N· +1)N·

1200 N

8
c h

2Nc
1

a

4
e ≥ ≠ ln(2Ÿ)

6 N

4
c h

Nc
1 ≥ N· ln(2Ÿ)

48 N

8
c h

2Nc
1

‘ 0 ≥ ≠1
4N

3
c h

Nc
1

h1 > 1

a

4
p ≥ 4 ln(h1)

N·
Nc ≥ ≠12Nc ≥ 198Nc

a

3
nB ≥ 4 ≥ ≠N·

N4
c

hNc
1

≥ ≠ (59N· ≠19)N·

20
N5

c

hNc
1

a

4
e ≥ ≠4 ln(2Ÿ)Nc ≥ 24 ln(2Ÿ)Nc

‘ 0 ≥ ≠6

Table 1: Large Nc behaviour of the thermodynamic functions and the interaction energy
per baryon, order by order in the hopping expansion, on both sides of the onset transition
for Nf = 2.

For higher Nf and higher orders the terms become more complicated, but the general
behaviour stays the same. For Nf = 2 our findings on both sides of the onset transition
are summarised in Table 1. A clear picture emerges: for h1 < 1 all terms, due to the
static determinant as well as the corrections, come with a factor h

Nc
1 to some power. Since

the fugacity contains m

LO
B /(NcT ) in the exponential, this factor will for low temperatures

always dominate the powers of Nc and result in a stronger exponential suppression before
the onset transition. In other words, the curves for all quantities will be squeezed ever
more tightly against the chemical potential axis as Nc gets large. Since we do not know the
hopping expansion of the baryon mass for general Nc, we expressed our results in units of
the leading order expression (2.20), which is responsible for onset happening at m

LO
B = µB

at large Nc.
The more interesting situation is h1 > 1, where we first focus on the baryon number

density. As explained in Section 2.3, the leading order contribution in the hopping expan-
sion corresponds to the static determinant only, for which the onset to baryon matter is a
first-order step function. This remains true for large Nc, with the lattice quark saturation
density going as a

3
n

sat = 2Nf Nc, i.e. the baryon density behaves as a

3
n

sat
B ≥ const..

The most intriguing result of this section is the Nc-scaling of the pressure beyond
baryon onset, p ≥ Nc. Preliminary results based on leading and next-to-leading order
were reported in [47]. Stability of this finding through three orders suggests it to hold to
any order in the hopping expansion, and thus for all current quark masses. In this case
strongly coupled QCD beyond the onset transition to baryon matter satisfies the definition
of quarkyonic matter [9]. Note that there is a finite interaction energy per baryon in units
of baryon mass also for Nc æ Œ, as was conjectured in [9]. Its value at leading order Ÿ

2 is
determined by d(d + 1)/2, where d refers to the number of spatial dimensions.
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The baryon onset transition for growing
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Figure 3: Onset transition to baryon condensation for di�erent values of Nc and N· in
the strong coupling limit.

3.4 Thermodynamic functions for large Nc

Since we have an explicit formula for the free energy for general Nc, one can easily ob-
tain the asymptotic behaviour of thermodynamic observables for large Nc. We study the
behaviour of the di�erent orders in the hopping expansion separately. This is necessary be-
cause, beyond the onset of baryon condensation, the leading static term represents lattice
saturation, which is an unphysical artefact of discretisation. As discussed in section 2.3,
correction terms do not contribute to saturation, but modify the shape of the curves as they
enter their low and high density asymptotes. These e�ects will remain after continuum
extrapolation and thus are physically significant.

The general strategy for the asymptotic analysis is most easily illustrated for the
leading order contribution to the pressure at Nf = 1

a

4
pLO = 1

N·
ln

1
1 + (Nc + 1)hNc

1 + h

2Nc
1

2
. (3.26)

Note that, just like in the SU(3) case in (2.23), the prefactors before h

Nc
1 can be under-

stood from spin-degeneracy. Specifically, a colour neutral state consisting of Nc fermions
is antisymmetric in colour space under particle exchange. The only completely symmetric
spin state of Nc spin 1/2-particles is that with s = Nc/2 . States with this spin and spin
components ≠Nc/2 Æ s3 Æ Nc/2 are degenerate, explaining the Nc + 1 prefactor.

When h1 < 1 then the term h

Nc
1 is strongly suppressed (stronger than N

k
c can grow

for any k) and a Taylor expansion around h

Nc
1 = 0 gives

a

4
pLO = 1

N·
(Nc + 1)hNc

1 + O(h2Nc
1 ) (3.27)

≥ 1
N·

Nch
Nc
1 for Nc æ Œ. (3.28)

For h1 > 1 the term with the highest power of h

Nc
1 determines the asymptotic behaviour

and one obtains

a

4
pLO ≥ 1

N·
ln

1
h

2Nc
1

2
(3.29)

≥ 2
N·

ln(h1)Nc. (3.30)
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Transition becomes more strongly first-order!



Gauge corrections

So far strong coupling limit,  not consistent with ’t Hooft scaling
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Figure 4: Baryon density, including gauge corrections, for growing Nc with the ’t Hooft
coupling held fixed. The qualitative behaviour is the same as in the strong coupling limit.

In the ’t Hooft limit ⁄1 = 1
⁄

Nt
H

, and therefore the asymptotic analysis of this term can be
done in the same way as for the strong coupling contributions. The result is

a

4
p⁄1,h1 ≥ 4

N· ⁄

N·
H

N

3
c

Y
]

[
h

Nc
1 , if h1 < 1 ,

1
hNc

1
, if h1 > 1 .

(3.42)

Hence, the Nc scaling of these corrections is subleading for h1 > 1, while for h1 < 1 the
previous results are again only modified by a constant ≥ N

0
c . Starting at O(⁄4

1) there
are contributions which are entirely due to the pure gauge part of the action. For these
contributions only integrals of the type

⁄

SU(Nc)

dWTr(W )nTr(W †)n = n! for n Æ Nc (3.43)

are relevant. When taking the large Nc limit, order by order these contributions to the
pressure are µ-independent and scale as ≥ ⁄

k
1 ≥ N

0
c .

The last statement hinges on the fact that the Nc dependence of ⁄1 is solely determined
by u. In [41] corrections to ⁄1 to O(u8) were computed and, although some corrections
do introduce additional Nc factors, those cancel order by order when all corrections are
summed up. A similar observation, including higher representations, was made in [22] in
the context of a strong coupling expansion of pure gauge theory without using an e�ective
theory.

The influence of the gauge corrections is illustrated in Fig. 4 for two di�erent choices of
the ’t Hooft coupling. Clearly, the small quantitative modifications by the gauge corrections
do not alter the qualitative Nc-behaviour observed earlier. Of course, in higher orders the
situation might be more complicated, as new interactions can arise in the e�ective theory
with non-trivial Nc-dependence. Nevertheless, the dominant contribution to the large Nc

limit of baryon dynamics should always be represented by powers of h

Nc like in the leading
contributions considered here, since Nc occurs in the exponent in these cases.
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Gross, Witten 80

Transition still steepens, Nc-scaling in condensed phase unaffected 



Continuum approach

Gross, Witten 80: interchange of strong coupling and large Nc-limit “highly suspicious” in 1+1d

Same here:   system immediately jumps to lattice saturation, unphysical

take continuum limit first!
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Figure 5: Continuum approach of the onset transition: steepening of the transition with
growing Nc is also obtained if the continuum limit is taken first.

3.8 Approaching the continuum

This situation leaves, however, one possible caveat. Even if one would be able to include
gauge contributions to all orders, the interchange of the Nc æ Œ limit and the strong
coupling expansion was observed to be “highly suspicious” in the case of QCD in 1+1
dimensions [44]. Our analysis so far was based on taking Nc large before a continuum
limit. The fact that the density at the onset transition immediately jumps to lattice
saturation indeed suggests that the limits should be taken in the opposite order, if one is
interested in continuum physics. In this case, the interplay between large Nc and the Pauli
principle should lead to a finite continuum density, just as for Nc = 3.

To get an idea if our results are consistent with this expectation we investigated the
behaviour of the baryon density towards the continuum. To set the scale at SU(3) we
use the same strategy as in [27], which gives a rough estimate of the parameter space. At
first, since heavy quarks have little influence on the running of the coupling, we use the
non-perturbative beta-function of pure gauge theory to get a relation between —SU(3) and
a/r0, where r0 is the Sommer parameter [49]. Using r0 = 0.5 fm sets a physical scale for
the lattices and the temperature can be adjusted by N· via T = 1/(aN· ). To obtain the
corresponding — for SU(Nc) we keep ⁄H = 2N

2
c /—SU(Nc) = 18/—SU(3) fixed. Finally, the

leading order expression (2.20) is used to keep the constituent quark mass constant for
di�erent a.

The outcome of this procedure is illustrated in Fig. 5, where the lattice spacing is
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Not enough orders to take limits, but steepening of transition clearly observed! 
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Continuum approach

Gross, Witten 80: interchange of strong coupling and large Nc-limit “highly suspicious” in 1+1d

Same here:   system immediately jumps to lattice saturation, unphysical

take continuum limit first!
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Figure 5: Continuum approach of the onset transition: steepening of the transition with
growing Nc is also obtained if the continuum limit is taken first.
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Altogether:
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Smooth transition of phase diagram to conjectured limit, scaling beyond baryon onset! 

Large      limit independent of current quark masses,  the same starting from physical QCD Nc
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No statement on chiral transition possible yet



Conclusions

Sign problem beaten by effective lattice theory for heavy quarks

Nuclear liquid gas transition and equation of state calculable in  
the heavy mass region

Varying Nc:  dense QCD is consistent with quarkyonic matter  
 



Conclusions

Finite density QCD enormous challenge, but urgently needed

QCD description of nuclear densities now possible for  
 
-heavy quarks near continuum  
 
-chiral quarks on coarse lattices

Can this be pushed far enough to cover light quarks near the continuum?

Backup slides



Subleading couplings



Numerical results for SU(3), one coupling
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Continuum comparison
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Figure 1. The phase diagram of QCD with very heavy quarks.

and extend the results of [3] in two ways. First, we push the derivation of the effective
action for the cold and dense regime through order u58. Second and most importantly, we
apply linked cluster expansion methods [? ] to our effective theory and demonstrate that
its thermodynamic functions and equation of state can be computed entirely analytically
in the domain of its validity.

2. The effective theory

2.1. Derivation

The derivation of the effective theory has been discussed in previous publications [1–3] so
we only outline the procedure and give our results. Starting point is lattice QCD with the
Wilson plaquette and fermion actions on an N3
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Linked cluster expansion of effective theory

4.3. Higher order couplings

At O(4) we are confronted with 3-point couplings. Fortunately, introducing higher n-
point interactions to the linked cluster expansion is straightforward. In our case we need a
generalised partition function

Z =

Z
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which has a cluster expansion
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where the derivative with respect to ũ is once more given by the cumulants,
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The geometry of the interaction term is contained in u
ijk

(x, y, z). For example if we take �

as a two-component field, � =
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corresponding to a wedge and a link, respectively. In this case the linked cluster expansion
of W is the sum of all diagrams which can be made out of these two components,
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Where the two new diagrams come from the 3-point wedge term. Note that now directions
are necessary to distinguish a node W

2,1

from W 2

1,1

. This also changes the symmetry factor.
It is thus possible to go ahead and write down all graphs from combining elements up to a
certain order, carefully calculating symmetry factors as one goes along.

Alternatively and as an independent check, one can use the idea of embedding graphs
from the effective action onto the basic graph topologies of the cluster expansion. As an
example, consider the square graph

symmetry: 8 . (4.19)
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Glesaaen, Neuman, O.P. 15“perturbation theory” in effective couplings



EoS fitted by polytrope, non-relativistic fermions!

Can we understand the pre-factor?   Interactions, mass-dependence… 

Equation of state of heavy nuclear matter, continuum 

0

2⇥ 10�6

4⇥ 10�6

6⇥ 10�6

8⇥ 10�6

1⇥ 10�5

1.2⇥ 10�5

0 5⇥ 10�5 0.0001 0.00015 0.0002 0.00025

p/
m

4 B

�
nB/m3

B

�5/3

a = 0.1fm
a = 0.07fm
Continuum

linear fit


