QCD in the heavy dense regime: Large N_{c} and quarkyonic matter

Owe Philipsen

Review: effective lattice theory for finite density QCD
The nuclear liquid gas transition
What happens at large N_{c}

The lattice-calculable region of the phase diagram

μ

Sign problem prohibits direct simulation, circumvented by approximate methods: reweigthing, Taylor expansion, imaginary chem. pot., need $\mu / T \lesssim 1 \quad\left(\mu=\mu_{B} / 3\right)$

- No critical point in the controllable region

Effective lattice theory for heavy dense QCD

O.P. with Fromm, Langelage, Lottini, Neuman, Glesaaen

- Two-step treatment:
I. Calculate effective theory analytically
II. Simulate effective theory

Step I.: split temporal and spatial link integrations:

$$
Z=\int D U_{0} D U_{i} \operatorname{det} Q e^{S_{g}[U]} \equiv \int D U_{0} e^{-S_{e f f}\left[U_{0}\right]}=\int D L e^{-S_{e f f}[L]}
$$

Spatial integration after analytic strong coupling and hopping expansion $\sim \frac{1}{g^{2}}, \frac{1}{m_{q}}$

Step II.: mild sign problem of effective theory

- Analytic solution by linked cluster expansion

Effective theory: start from Wilson's lattice action

Pure gauge part: character expansion

$$
\begin{aligned}
u(\beta) & =\frac{\beta}{18}+\frac{\beta^{2}}{216}+\ldots<1 \\
\beta & =\frac{2 N_{c}}{g^{2}} \quad T=\frac{1}{a N_{\tau}}
\end{aligned}
$$

Fermion determinant: hopping expansion
$\kappa=\frac{1}{2 a m+8}$

Generates couplings over all distances, n-pt. couplings, higher reps....:

The effective 3d theory

$$
\begin{aligned}
-S_{\mathrm{eff}} & =\sum_{i} \lambda_{i}\left(u, \kappa, N_{\tau}\right) S_{i}^{\mathrm{S}}-2 N_{f} \sum_{i}\left[h_{i}\left(u, \kappa, \mu, N_{\tau}\right) S_{i}^{\mathrm{A}}+\bar{h}_{i}\left(u, \kappa, \mu, N_{\tau}\right) S_{i}^{\dagger \mathrm{A}}\right] \\
\text { effective couplings } & S_{i}^{A, S}=S_{i}^{A, S}\left[L, L^{*}\right]
\end{aligned}
$$

This is a 3d continuous spin model!
cf. Svetitsky-Yaffe conjecture for universality of $\operatorname{SU}(\mathrm{N})$ Yang-Mills

$$
\begin{array}{rlr}
Z= & \int D W \prod_{<\mathbf{x}, \mathbf{y}>}\left[1+\lambda\left(L_{\mathbf{x}} L_{\mathbf{y}}^{*}+L_{\mathbf{x}}^{*} L_{\mathbf{y}}\right)\right] & L=\operatorname{Tr} W \\
& \times \prod_{\mathbf{x}}\left[1+h_{1} L_{\mathbf{x}}+h_{1}^{2} L_{\mathbf{x}}^{*}+h_{1}^{3}\right]^{2 N_{f}}\left[1+\bar{h}_{1} L_{\mathbf{x}}^{*}+\bar{h}_{1}^{2} L_{\mathbf{x}}+\bar{h}_{1}^{3}\right]^{2 N_{f}} \\
& \times \prod_{<\mathbf{x}, \mathbf{y}>}\left(1-h_{2} \operatorname{Tr} \frac{h_{1} W_{\mathbf{x}}}{1+h_{1} W_{\mathbf{x}}} \operatorname{Tr} \frac{h_{1} W_{\mathbf{y}}}{1+h_{1} W_{\mathbf{y}}}\right)\left(1-h_{2} \operatorname{Tr} \frac{\bar{h}_{1} W_{\mathbf{x}}^{\dagger}}{1+\overline{h_{1} W_{\mathbf{x}}^{\dagger}}} \operatorname{Tr} \frac{\bar{h}_{1} W_{\mathbf{y}}^{\dagger}}{1+\bar{h}_{1} W_{\mathbf{y}}^{\dagger}}\right)
\end{array}
$$

Yang-Mills transition by series expansion

Solution of eff.th.

order of expansion

Two calculations:

1. by "hand"
(Q. Pham, J. Scheunert, GU)
2. automatic graph generation (J. Kim, GU)

Conversion to 4d YM

The deconfinement transition for heavy quarks

eff. theory				4d MC,WHOT	4d MC,de Forcrand et al
N_{f} M_{c} / T $\kappa_{c}\left(N_{\tau}=4\right)$ $\kappa_{c}(4)$, Ref. $[23]$ $\kappa_{c}(4)$, Ref. $[22]$ 1 $7.22(5)$ $0.0822(11)$ $0.0783(4)$ ~ 0.08 2 $7.91(5)$ $0.0691(9)$ $0.0658(3)$ - 3 $8.32(5)$ $0.0625(9)$ $0.0595(3)$ -					

Accuracy $\sim 5 \%$, predictions for $\mathrm{Nt}=6,8$,... available!

The fully calculated deconfinement transition

"Heavy QCD" phase diagram

Same phase structure:
continuum, functional methods:
Fromm, Langelage, Lottini, O.P. II
Fischer, Lücker, Pawlowski I5

Cold and dense: static strong coupling limit

Fromm, Langelage, Lottini, Neuman, O.P., PRL I3
$\mathrm{T}=0$: anti-fermions decouple:

$$
\begin{aligned}
& h_{1}=\left(2 \kappa e^{a \mu}\right)^{N_{\tau}}=e^{\frac{\mu-m}{T}} \\
& \bar{h}_{1}=\left(2 \kappa e^{-a \mu}\right)^{N_{\tau}}=e^{\frac{-\mu-m}{T}}
\end{aligned}
$$

$$
Z(\beta=0) \xrightarrow{T \rightarrow 0}\left[\prod_{f} \int d W\left(1+h_{1} L+h_{1}^{2} L^{*}+h_{1}^{3}\right)^{2}\right]^{V}=z_{0}^{V}
$$

$$
N_{f}=1: \quad z_{0}=1+4 h_{1}^{3}+h_{1}^{6} \quad \text { free baryon gas }
$$

$$
\text { spin } 3 / 2,0
$$

Silver blaze phenomenon + Pauli principle: $\quad \lim _{T \rightarrow 0} a^{3} n=\left\{\begin{array}{cc}0, & \mu<m \\ 2 N_{c}, & \mu>m\end{array}\right.$

$$
N_{f}=2:
$$

$$
z_{0}=\left(1+4 h_{d}^{3}+h_{d}^{6}\right)+\left(6 h_{d}^{2}+4 h_{d}^{5}\right) h_{u}+\left(6 h_{d}+10 h_{d}^{4}\right) h_{u}^{2}+\left(4+20 h_{d}^{3}+4 h_{d}^{6}\right) h_{u}^{3}
$$

$$
+\left(10 h_{d}^{2}+6 h_{d}^{5}\right) h_{u}^{4}+\left(4 h_{d}+6 h_{d}^{4}\right) h_{u}^{5}+\left(1+4 h_{d}^{3}+h_{d}^{6}\right) h_{u}^{6}
$$

"Di-baryons": 3 spin I triplets, I spin 0 singlet, $\Delta^{++} \Delta^{0}, \quad p p$

Complete spin-flavour structure of baryons (mesons for isospin chemical potential)

Cold and dense regime: onset of baryon matter

Glesaaen, Neuman, O.P., JHEP I5

- Continuum approach ~a as expected for Wilson fermions

Cut-off effects grow rapidly beyond onset transition: lattice saturation!

- Finer lattice necessary for larger density!

Binding energy per nucleon

$\epsilon \equiv \frac{e-n_{B} m_{B}}{n_{B} m_{B}} \stackrel{L O}{=}-\frac{4}{3} \frac{1}{a^{3} n_{B}}\left(\frac{z_{3}}{z_{0}}\right)^{2} \kappa^{2}=-\frac{1}{3} \frac{1}{a^{3} n_{B}}\left(\frac{z_{3}}{z_{0}}\right)^{2} e^{-a m_{M}}$

Light quarks: first order transition + endpoint

phase coexistence: first order

- for higher $T=\frac{1}{a N_{T}}$ crossover
- nuclear liquid gas transition!

$$
\mu / m_{q}
$$

"Heavy QCD" phase diagram

QCD at large N_{c}

Definition,'t Hooft 1974: $\quad N_{c} \longrightarrow \infty, \quad g^{2} N_{c}=$ const.

- suppresses quark loops in Feynman diagrams
- mesons are free; corrections: cubic interactions $\sim 1 / \sqrt{N_{c}}$, quartic int. $\sim 1 / N_{c}$
- meson masses $\sim \Lambda_{Q C D}$
baryons: N_{c} quarks, baryon masses $\sim N_{c} \Lambda_{Q C D}$
- baryon interactions: $\sim N_{c}$

Implications on the phase diagram

McLerran, Pisarski 07:
large Nc

QCD, conjectured

Quarkyonic matter:
can smoothly vary from baryons to quark matter

The effective theory for large N_{c}
 O.P., Jonas Scheunert I9

Recalculate for general N_{c}, start with strong coupling limit, need new $\operatorname{SU}(\mathrm{N})$ integrals!

Static determinant:

$$
\int_{S U(N)} \mathrm{d} U \operatorname{det}\left(1+h_{1} U\right)^{2 N_{f}}=\sum_{p=0}^{N_{f}}\left(\prod_{i=1}^{p} \frac{\left(i-1+2 N_{f}-p+N\right)^{2 N_{f}-p}}{\left(i-1+2 N_{f}-p\right)^{2 N_{f}-p}}\right)\left(h_{1}^{p N}+h_{1}^{\left(2 N_{f}-p\right) N}\right)\left(1-\frac{\delta_{p, N_{f}}}{2}\right)
$$

And corrections: $\quad \int_{S U(N)} \mathrm{d} U \operatorname{det}\left(1+h_{1} U\right)^{2 N_{f}} \operatorname{tr}\left(\frac{\left(h_{1} U\right)^{n}}{\left(1+h_{1} U\right)^{m}}\right)$

$$
\begin{aligned}
= & h_{1}^{N\left(2 N_{f}+1\right)} \sum_{r=\max (0, N-m)}^{2 N_{f}+N-m}(-1)^{r+N+1}\binom{N+r-1}{r}(r+m-1)^{N-1} \frac{\left(2 N_{f}\right)^{2 N_{f}+1-r-m}}{\left(N+2 N_{f}-r-m\right)} \\
& +\sum_{p=0}^{2 N_{f}} h_{1}^{N p} \operatorname{det}_{1 \leq i, j \leq N}\left[\binom{2 N_{f}}{i-j+p}\right] \sum_{\mu=1}^{N} \sum_{r=\max (0, \mu-m)}^{\mu+p-m}(-1)^{r}\binom{r+n-1}{r} \\
& \times \frac{(-1)^{\mu+1}}{r+m} \frac{(r+m+N-\mu) \frac{r+m}{(r+m-\mu)!(\mu-1)!}}{\left(N+2 N_{f}-p+r+m-\mu\right)^{r+m}} .
\end{aligned}
$$

Results for $N_{f}=2$:

Static determinant:

$$
z_{0}=1+\frac{1}{6}\left(h_{1}^{N}+h_{1}^{3 N}\right)(N+3)(N+2)(N+1)+\frac{1}{12} h_{1}^{2 N}(N+3)(N+2)^{2}(N+1)+h_{1}^{4 N}
$$

Curious: spin degeneracy of a baryon determined by N !

Correction:

$$
\begin{aligned}
z_{11}= & \frac{1}{24} h_{1}^{N}(N+3)(N+2)(N+1) N+\frac{1}{24} h_{1}^{2 N}(N+3)(N+2)^{2}(N+1) N \\
& +\frac{1}{8} h_{1}^{3 N}(N+3)(N+2)(N+1) N+h_{1}^{4 N} N
\end{aligned}
$$

Thermodynamic functions for large N_{c}

Order hopping expansion			κ^{0}	κ^{2}
$h_{1}<1$	$a^{4} p$	$\sim \frac{1}{6 N_{\tau}} N_{c}^{3} h_{1}^{N_{c}}$	$\sim-\frac{1}{48} N_{c}^{7} h_{1}^{2 N_{c}}$	$\sim \frac{3 N_{\tau} \kappa^{4}}{800} N_{c}^{8} h_{1}^{2 N_{c}}$
	$a^{3} n_{B}$	$\sim \frac{1}{6} N_{c}^{3} h_{1}^{N_{c}}$	$\sim-\frac{N_{\tau}}{24} N_{c}^{7} h_{1}^{2 N_{c}}$	$\sim \frac{\left(9 N_{\tau}+1\right) N_{\tau}}{1200} N_{c}^{8} h_{1}^{2 N_{c}}$
	$a^{4} e$	$\sim-\frac{\ln (2 \kappa)}{6} N_{c}^{4} h_{1}^{N_{c}}$	$\sim \frac{N_{\tau} \ln (2 \kappa)}{48} N_{c}^{8} h_{1}^{2 N_{c}}$	
$h_{1}>1$	0	$\sim-\frac{1}{4} N_{c}^{3} h_{1}^{N_{c}}$		
	$a^{3} n_{B}$	$\sim \frac{4 \ln \left(h_{1}\right)}{N_{\tau}} N_{c}$	$\sim-12 N_{c}$	$\sim 198 N_{c}$
	$a^{4} e$	~ 4	$\sim-N_{\tau} \frac{N_{c}^{4}}{h_{1}^{N_{c}}}$	$\sim-\frac{\left(59 N_{\tau}-19\right) N_{\tau}}{20} \frac{N_{c}^{5}}{h_{1}^{N_{c}}}$
	ϵ	$\sim-4 \ln (2 \kappa) N_{c}$	$\sim 24 \ln (2 \kappa) N_{c}$	
		0	~-6	

Beyond the onset transition: $\quad p \sim N_{c}$ definition of quarkyonic matter!

The baryon onset transition for growing N_{c}

Transition becomes more strongly first-order!

Gauge corrections

So far strong coupling limit, not consistent with 't Hooft scaling

$$
u(\beta)=\frac{1}{\lambda_{H}}=\frac{1}{g^{2} N_{c}}<1 \quad \text { Gross, Witten } 80
$$

Transition still steepens, Nc-scaling in condensed phase unaffected

Continuum approach

Gross, Witten 80: interchange of strong coupling and large Nc-limit "highly suspicious" in I+Id

Same here: system immediately jumps to lattice saturation, unphysical take continuum limit first!

Not enough orders to take limits, but steepening of transition clearly observed!
Quarkyonic matter on the lattice?

Continuum approach

Gross, Witten 80: interchange of strong coupling and large Nc-limit "highly suspicious" in I+Id

Same here: system immediately jumps to lattice saturation, unphysical take continuum limit first!

Not enough orders to take limits, but steepening of transition clearly observed!
Quarkyonic matter on the lattice?

Altogether:

Smooth transition of phase diagram to conjectured limit, scaling beyond baryon onset!

Large N_{c} limit independent of current quark masses, the same starting from physical QCD

No statement on chiral transition possible yet

Conclusions

Sign problem beaten by effective lattice theory for heavy quarks

- Nuclear liquid gas transition and equation of state calculable in the heavy mass region

Varying Nc: dense QCD is consistent with quarkyonic matter

Backup slides

Subleading couplings

Subleading contributions for next-to-nearest neighbours:

$$
\begin{aligned}
& \lambda_{2} S_{2} \propto u^{2 N_{\tau}+2} \sum_{[k]]}^{\prime} 2 \operatorname{Re}\left(L_{k} L_{l}^{*}\right) \quad \text { distance }=\sqrt{2} \\
& \lambda_{3} S_{3} \propto u^{2 N_{\tau}+6} \sum_{\{m n\}}^{\prime \prime} 2 \operatorname{Re}\left(L_{m} L_{n}^{*}\right) \quad \text { distance }=2
\end{aligned}
$$

as well as terms from loops in the adjoint representation:

$$
\lambda_{a} S_{a} \propto U^{2 N_{T}} \sum_{<i j>} \operatorname{Tr}^{(a)} W_{i} \operatorname{Tr}^{(a)} W_{j} \quad ; \quad \operatorname{Tr}^{(a)} W=|L|^{2}-1
$$

Numerical results for $\mathrm{SU}(3)$, one coupling

Order-disorder transition =Z(3) breaking

Linked cluster expansion of effective theory

$$
\mathcal{Z}=\int \mathcal{D} \phi e^{-S_{0}[\phi]+\frac{1}{2} \sum v_{i j}(x, y) \phi_{i}(x) \phi_{j}(y)+\frac{1}{3!} \sum u_{i j k}(x, y, z) \phi_{i}(x) \phi_{j}(y) \phi_{k}(z)+\ldots}
$$

"perturbation theory" in effective couplings
Glesaaen, Neuman, O.P. I5

Equation of state of heavy nuclear matter, continuum

EoS fitted by polytrope, non-relativistic fermions!
Can we understand the pre-factor? Interactions, mass-dependence...

