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The hydrodynamic description of matter produced in
heavy ion collisions works amazingly well !...

even in situations where, a priori, it should not ...
(e.g. in presence of strong gradients)

Fluid behavior requires (some degree of) local equilibration
(='thermalization’). How is this achieved?

Usual picture:

- microscopic degrees of freedom relax quickly towards local equilibrium
- long wavelength modes, associated to conservation laws, relax on longer time scales



Thermalization

Two main issues

i) relative populations of different momentum modes

Main topic for the

ii) isotropy of momentum distribution e rest of this talk
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Longitudinal expansion hinders isotropization

The fast expansion of the matter along the
collision axis tends to drive the momentum
distribution to a very flat distribution

Translates into the +px
existence of two 3 #
different pressures — /
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Anisotropy relaxes slowly,
like a 'collective’ variable associated to a conservation law

Hydrodynamic behavior may emerge
before local isotropization if achieved

"HY drod Yna mizatlon"

First hints came from holographic descriptions



ldeal hydrodywnamics of boost tnvariant systems

(Bjorken flow) _
energy density

O€ e+ P
Equation of motion 0.(te) = —Py, — = — L
ot T

Three independent components €, P, P; but: ¢ =2P, + P;

conformal symmetry

In local equilibrium P, = P; = €/3 (equation of state)
Then ¢~ 7 %/° T ~1 13 (e ~ T
Ji : :
Viscous hydrodynamics P, — P, = - (gradient expansion)

In boost invariant systems, the gradient expansion is an
expansion in inverse powers of
P P 1 1/T micro

— — —— ~ Knudsen number ~
w T macro




Holographic description of a boost invariant plasma

(Heller, Janik, Witaszczyk, [1103.3452))
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Viscous hydro can cope with partial thermalization, and large
differences between longitudinal and transverse pressures



The gradient expansion is divergent
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fr. has been calculated up to n=240 (1) (Htller janik, witaszezyk , 2013)

Sophisticated resummation yields a 'transseries’

(Heller, sPaL’wx,sleL , 2015)
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n=0
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Similar features are observed in kinetic theory
(Heller, Kurkela, Spalinski , Svensson, 2016)



Simple kinetic equation
e Relaxation time approximation

0 =20, ] f(p/T) = -

(derivative at constant r:7 )

fo,7) = feq(p;7)

TR

eFree streaming (e.g. in absence of collisions)

f(t,p) = fo(pL,p:t/t0)

e Solved long ago by Baym (LB 138 (1984) 18]
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(angular integral)



Special, moments of the momentum distribution

(P®B, LLYan , 2017, 18, 19)

Special moments p, = pcos6

1, 9
»Cn = /p2P2n(cos Q)f(p) Po(z) =1 Py(2)= 5(327 —1)

p (Legendre polynomial)

Why moments ?
e There is too much information in the distribution function

e We want to focus on the angular degrees of freedom

The energy momentum tensor is described by first two moments

= / f(p)p " L= L1 =PL—Pr



coupled equations for the moments

n 1 n
056 — — [anﬁn + bn£n—1 + CnLn—l—l] — L_ (n > 1)
T T TR

(Free streaming)
(collisions)

oL 1
a—TO = [aoLo + coLy] ao = 4/3 co =2/3

Lo=¢ L1 ="Pr—Pr
o The coefficients dy,bn,Cy  are pure numbers
e The competition between expansion and collisions is made obvious
e Interesting system of coupled linear equations

e Emergence of hydrodynamics is transparent: equations for
the lowest moments

¢ Provides much insight on various versions of viscous hydrodynamics



Free strea WLLV\,@ solution
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Free streaming
SimpLe truncations work!

0L, 1 . S
= — — [an[,n -+ bn£n—1 + Cn£’n—|—1] 8t£ =—-ML

ot T
(t = In(7/70))

Keeping only the first two moments one gets

0 (L 2 2 L
a(2)=- (L 2)(2)

Two eigenmodes )y = 0.929366 A1 = 2.21349

Truncations are reasonably accurate
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Free streaming fixed point

One can transform the coupled linear equations into a single non linear
differential equation

d _
T% + gt + (ag + a1)go + agay — coby = 0. g.(1) =70:In L,
Write this as
dgo _ )
i B(go) B(go) = —8y — (ao + ai1)go — apai + cobi

gy =—-4 =-2.21 g8y = —Ao = —0.929

B(9o)

(unstable) (stable)

NB exact fixed point

o5 2 15 -1 05 gn(T = 00) = —1
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Including collisions
Simple truncations work well

Exact —
Two-moment ——

0.1 1 10

Two-moment truncation

1

O0r Lo = - (a0Lo + coL1) ("Almost" viscous hydrodynamics...

1 in fact, better!)

1
(97-£1 = —— (b1£0 -+ a1£1) — —El
T TR

These simple equations capture much of the physics and illuminate the analytic
features of the transition to viscous hydrodynamics



The hydrodyna mic fixed polnt

1 1 1
0Ly = —— (agLo + coLy) 0-L1=——biLo+a1ly) — —L;
T T TR

Complete damping of first moment
70:Lo = —apLo = —=(4/3)Lo  (hydro fixed point)

Modified equation of motion
wgl + g5 + (ap + a1 + w)go + wag + aga; — bicyg =0, 7 = Cste
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The transition from free streaming to hydrodynamics

( Attractor solution )

Early and late times are controlled by the free streaming and the hydrodynamic
fixed points, respectively

g,(t) =710;1In L,

0.8
Free streaming - k \ Hydro fixed point
fixed point YRV N ]
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( Attractor solution )

- truncation at n=0
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Renormalizatiow of the viscosity

The effect of higher moments can be viewed as a renormalisation of the equation
for the lowest moments, i.e. of the viscous hydrodynamical equations

1
0, L1 = —= (1L + b1 Lo) — [1 + LR 52] L1

T T Li| Tr
Sizeable reduction of the effective
renormalisation of relaxation time, viscosity at early time
TR — Z n/sTR T
0.8 -
or, equivalently, of the viscosity p
v 0.6 - ///
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[For an early suggestion of such an effect: 001 R 9o 10

Lublinsky-Shuryak (2007)] g



variants of viscous hydrodynamics

Different approximate ways to solve the equations for the first two moments

Navier Stokes

1
gre=—of 1 m=_" De—_2€, 40 = —coly

3t T 3T 37 3712

Mueller-Israel-Steward

m 4 1 4
M =—— 4 1 ———(H——”>

T 3TTx Tr

Second order hydro (DNMR)

_ 4 n 11 11 38 .
aTH — 5; — /Bﬂ-ﬂ-_ — E /371'71' — ﬁ = aq 7_71- — TR
oL L1 L . 4 5
same as —L =-—p-—q 2= provided > cobi -
or T T TR

3717,
which holds in leading order if T = Tr

Similar analysis can be made for BRSSS hydro (full second order, conformal), or third
order (Jaiswal).

[DNMR= Denicol, Niemi, Molnar, Rischke (2012)]
[BRSSS= Baier, Romatschke, Son, Starinets, Stephanov (2008)]



conclustons

In high energy collisions, the longitudinal expansion prevents the system
to reach full isotropy in a short time (expansion plays a role somewhat

similar to a conservation law...)

However strong anisotropy does not hinder the emergence of (viscous)
hydrodynamic behavior ("attractor")

A simple picture based on special set of moments of the distribution
functions provides much insight info the mathematical structure of
viscous hydrodynamics of expanding (boost invariant) systems

Strong reduction of the viscosity at early times due to out of
equilibrium effects (coupling to higher moments)

In practice, the expansion in angular modes can speed up solution of
Kinetic equations in more realistic settings (see e.g. JPB and N. Tanji,

arXiv:1904.08244)



