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Q: How do the systems produced in high enegry collisions thermalise/”hydronise”?

Exploratory new approach based on first principles QM w/o assuming any form of

thermalisation.

Similar question (formation of black holes/entropy from collisions of pure states)

The wave-function of an incoming projectile hadron (eigenstate of QCD LC Hamiltonian)

has many entangled gluon Fock components

After collision with a target, some of these gluons will be decohered and observed as final

state particles

Initially, these gluons had an entanglement entropy (with respect to other Fock

components in the incoming wave-function).

This entropy gets ”released” by the scattering in the form of final state entropy

We hope to understand the dynamical mechanism of entropy production

We also hope to be able to shad light on the question to what extent the final state of

the collision resembles a thermal state.



Light Cone Wave Function
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Hard particles with k+ > Λ scatter of the target. Hard (valence) modes are described

by the valence density ρ(x⊥).

The boost opens a window above Λ with the width ∼ δy. The window is populated

by soft modes, which became hard after the boost. These newly created hard modes do

scatter off the target.

In the dilute limit ρ ∼ 1; gluon emission ∼ αs ρ, LO = one gluon, NLO = 2 gluons

In the dense limit ρ ∼ 1/αs, we have αs ρ ∼ 1, and the number of gluons in the window

can be very large.



Denote soft glue creation and annihilation operators as a and a†.
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†
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The dressed incoming hadron light cone wave function

|Ψin〉Y = ΩY(ρ, a) |ρ〉valence ⊗ |0a〉soft

|Ψin〉Y is an eigen-function of the Hamiltonian, HQCD |Ψin〉Y = E |Ψin〉Y

The major challenge is to find Ω that diagonalises the Hamiltonian

Ω
†
H Ω = Hdiagonal



LCWF in Dilute Limit

Gluon coherent field operator in the dilute limit

ΩY(ρ → 0) ≡ CY = Exp

{
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Emission amplitude is given by the

Weizsaker-Williams field
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The operator C dresses the valence charges by a cloud of the WW gluons



Density Matrix of soft modes

The wave function coming into the collision region at time t = 0

|Ψin〉 = ΩY |ρ, 0a〉 .

Define the reduced density matrix of soft modes

ρ̂ =

∫

DρW[ρ] |Ψin〉 〈Ψin|

McLerran-Venugopalan model for dense systems:
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Qs denotes Saturation Scale – a typical semi-hard transverse momentum in a dense

nucleus. At the same time Qs measures average gluon density.



”Dilute/Dense mix approximation”: Ω = C and W = WMV (Gaussian),

ρ̂ is computable analytically

T. Altinoluk, N. Armesto, G. Beuf, A. Kovner and ML, arXiv:1503.07126
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Here we have introduced compact notations:
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M bears two polarisation, colour, and coordinate indices, collectively denoted as {ij}.



Entanglement Entropy

Alex Kovner and ML, arXiv:1506.05394

Entanglement Entropy of soft modes
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How to calculate ln? The “replica trick”:
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Calculate ρN and take N → 0. N copies of the field - replicas.
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σ
E
=

1

2
tr

{

ln
M

π
+

√

1 +
4M

π
ln

[

1 +
π

2M

(

1 +

√

1 +
4M

π

)]}



Translationally invariant limit (µ = const):

M
ab

ij (p) = g
2
µ

2pipj

p4
δ
ab

For small M , or the UV contribution (formally UV divergent)
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ΛUV ∼ MeY0 ≫ M, where eikonal approximation breaks down
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But not quite what we would like to know.

We need to address scattering process



Density Matrix of produced soft gluons

The wave function coming into the collision region at time t = 0

|Ψin〉 = ΩY |ρ, 0a〉 .

The system emerges from the collision region with the wave function

|Ψout〉 = Ŝ ΩY |ρ, 0a〉 .

Eikonal scattering approximation

The system keeps evolving after the collision to the asymptotic time t → +∞, at which

point measurements are made

The final state density matrix

ρ̂p =

∫

DρW[ρ]Ω
†
Y |Ψout〉 〈Ψout|ΩY = ρ̂[M

P → M]

Here extra Ω corresponds to final state radiation. It could be also viewed as change of

basis projecting into eigenstates of free Hamiltonian.



Single inclusive gluon production
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〈...〉T corresponds to averaging over target fields S and is equivalent to event-by-event

statistical ensemble average



Produced Entropy
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T -averaging is complicated Let expand σP around M̄ ≡ 〈MP〉T (dilute projectile limit)

M̄ij = δ
abQ
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PA(x, y) ≡ 〈tr[S(x)S†(y)]〉T - S-matrix of an adjoint dipole

M̄ is almost single inclusive gluon, but it is not summed over ij
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First term is almost −n lnn, where n is a multiplicity per unit rapidity (dN/dη)

it depends on the production probabilities of longitudinally and transversely (with respect

to the direction of their transverse momentum) polarized gluons separately

Second term - almost correlated part of double inclusive gluon production.

Correlations between gluons decrease entropy of the produced state.

For a parametrically large number of produced particles (αsdN/dη ∼ 1), the entropy is

parametrically of order 1/αs



”Temperature” of produced system

We can naturally define temperature through:
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Keeping only mean field term in the entropy:
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Summary/Outlook

• What I reported is just a pilot project on ”Quasi-Thermodynamics”

• Energy evolution of the density matrix/entanglement entropy. Decoherence inside

parton cascade

For a fixed distribution of valence charges ρ (event-by-event), our projectile density

matrix is that of a pure state. Applying JIMWLK evolution to the density matrix

(or to EE), we can demonstrate that the energy evolution generates mixing/increases

entropy.

N. Armesto, F. Dominguez, A. Kovner, ML, and V. Skokov, 1901.08080 [hep-ph] (JHEP)

• In the dense regime : Ω(ρ ∼ 1/αs) = C B B is a Bogolyubov operator

B = exp[B(ρ) (a
2
+ a

† 2
) + · · ·]

CGC wavefunction is a squeezed state

Altinoluk, Kovner, ML, Peressutti, Wiedemann (2007-2009)



• Entropy production as a function of time: ρ̂(t) → σp(t)

ρ̂(t) = Ω
†
U(t) Ŝ Ω|0〉〈0|Ω†

Ŝ
†
U

†(t)Ω; U(t) = e
iHQCD t

This turns out to produce time-independent EE, the one we have computed earlier

New idea is to introduce decoherence at event-by-event (fixed ρ) level by turning on

some ”white noise” variable ξ coupled to energy.

ρ̂(t) = trξ [e
−

ξ2

2t2 Ω
†
e
iH0ξ Ŝ Ω|0〉〈0|Ω†

Ŝ
†
e
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The new variable ξ can be effectively thought of as an energy resolution scale which

could be ascribed to the experimental apparatus. what we have effectively done is to

artificially extend the Hilbert space by augmenting it through the ξ subspace.

A. Kovner, ML, and M. Serino, Phys. Lett. B 792, 4 (2019)



Eikonal scattering approximation
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Eikonal scattering is a color rotation

Eikonal factor does not depend on rapidity

In the light cone gauge (A+ = 0) the large target field component is A− = αt.
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|in〉 = |z, b〉 ; |out〉 = |z, a〉 ; |out〉 = S |in〉


