

6 years of CERN Cloud From 0 to 300k cores

HEPIX - San Diego - 2019 Belmiro Moreira on behalf of the CERN Cloud Team belmiro.moreira@cern.ch @belmiromoreira

Outline

- Early Virtualization attempts
- Finding the right Cloud Orchestrator
- CERN OpenStack Cloud
- Some Infrastructure Highlights
- What's next?

2009 - 2011 Virtualization and Server Consolidation

Why laaS at CERN?

"one server, one application"

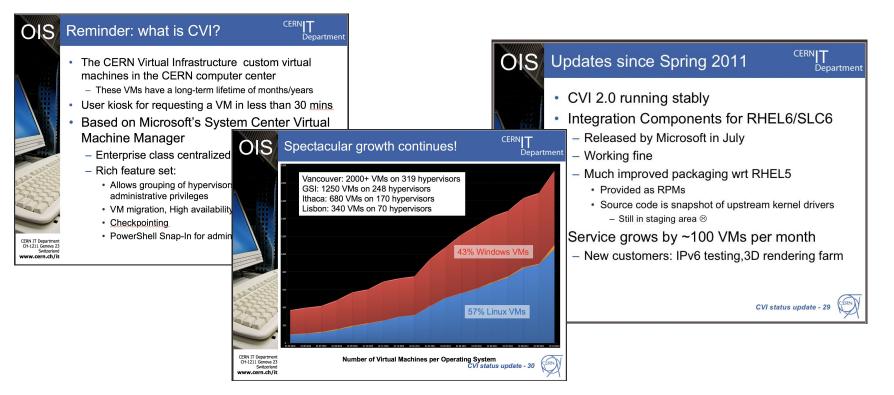
- Low Infrastructure Utilization
 - Typically one application per server to avoid affecting the availability of another applicati
- Increasing Physical Infrastructure Costs

 Power consumption, cooling and facilities cc
- Increasing IT Management Costs
 - Spend disproportionate time and resources maintenance, and thus require more person
- Insufficient Failover and Disaster Protect
 - The threat of security attacks, natural disast importance of business continuity

Application	Applicatio
Operating System	Operating Sy
Server	Server

Public Procurement Purchase Model

Step	Time (Days)	Elapsed (Days)		
User expresses requirement		0		
Market Survey prepared	15	15		
Market Survey for possible vendors	30	45		
Specifications prepared	15	60		
Vendor responses	30	90		
Test systems evaluated	30	120		
Offers adjudicated	10	130		
Finance committee	30	160		
Hardware delivered	90	250		
Burn in and acceptance	30 days typical 380 worst case	280		
Total		280+ Days		

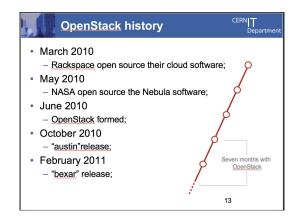

How can we address these challenges

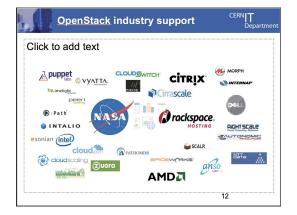
Virtualization Cloud Computing

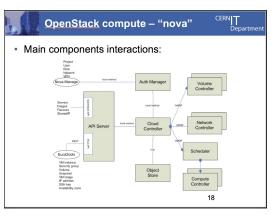
LxCloud - Virtualize Batch Infrastructure

CVI - CERN Virtual Infrastructure

2011 - 2013 Cloud Prototype

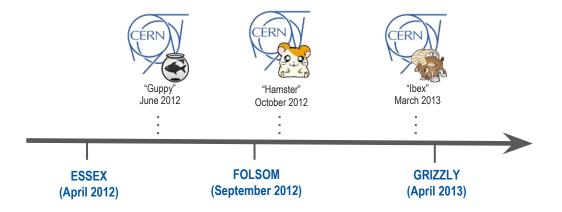

Agile Infrastructure Project


Year	What	Actions				
2011		Agree overall principles				
2012		Prepare formal project plan Establish IaaS in CERN CC Production Agile Infrastructure Monitoring Implementation as per WG Migrate Ixcloud Early adopters to Agile Infrastructure				
2013	LSD 1 New Data Centre	Extend IaaS to remote CC Business Continuity Support Experiment App re-work Migrate CVI General migration to Agile with SLC6 and Windows 8				
2014	LSD 1 (to November)	Phase out Quattor/CDB/				


OpenStack at CERN - Early days

- Released on October 2010
- Created by Nasa and Rackspace
- Austin release (Nova, Swift)
- OpenSource (Apache 2.0)

What is OpenStack?	CERN T Department
OpenStack is a collection of open source projects that provides an operating process or chestrating clouds in a massive	platform for
	11


OpenStack at CERN - Early days

• First version of OpenStack Horizon

Prototyping CERN OpenStack Cloud

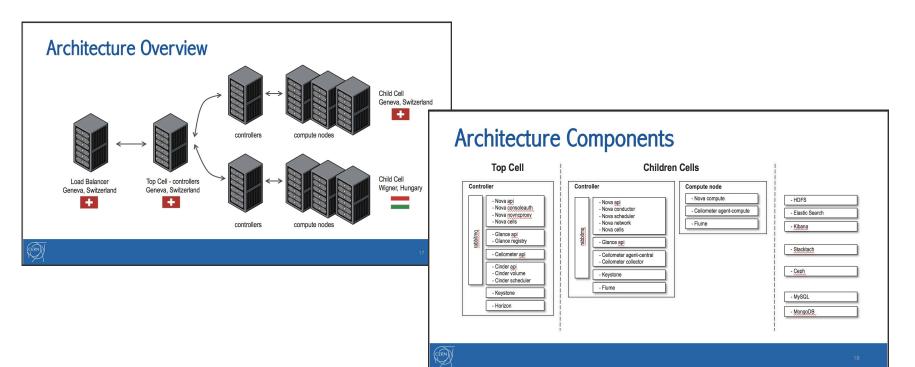
- Iterate Fast...
 - Build test infrastructures and open then to early adopters
 - Few hundred nodes available
 - 2 different virtualization technologies (KVM, Hyper-V)
 - Integration with other Agile Infrastructure projects (puppet, monitoring, ...)

2013 - 2019 From 0 to +300k cores

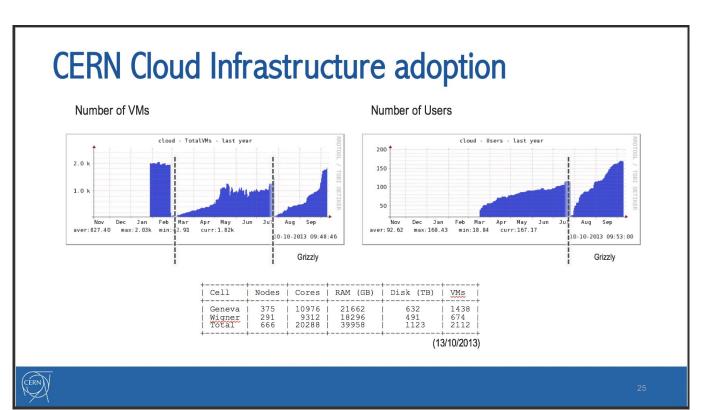
CERN OpenStack Cloud - 2013

OpenStack at CERN - grizzly release

- +2 Cells Geneva and Wigner Computer Centers
- HA+1 architecture
- Ceilometer deployed
- Integrated with CERN accounts and network
- Monitoring OpenStack components status
- Glance Ceph backend

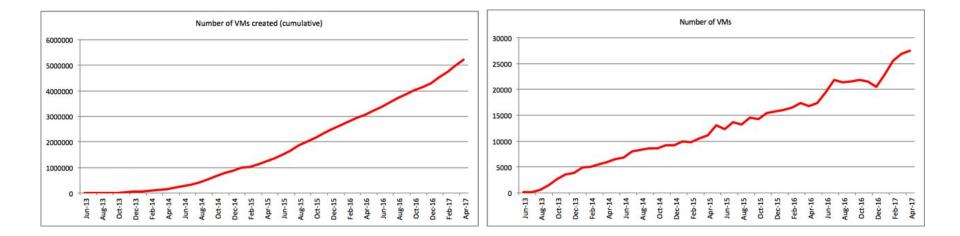

CERN)

Cinder tests - <u>Ceph</u> backend


Infrastructure Overview

- HAProxy as load balancer
- Master and Compute nodes
 - 3+ Master nodes per Cell
 - O(1000) Compute nodes per Cell (KVM and <u>HyperV</u>)
 - 3 availability zones per Cell
- <u>Rabbitmq</u>
 - At least 3 brokers per Cell
- Rabbitmq cluster with mirrored queues

CERN OpenStack Cloud - 2013



CERN OpenStack Cloud - 2013

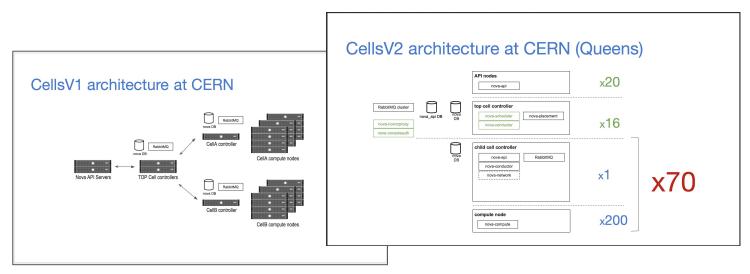
16

CERN OpenStack Cloud - Growth

CERN OpenStack Cloud - Growth

• OpenStack projects available in the CERN Cloud over releases

Grizzly	Havana	Icehouse	Juno	Kilo	Liberty	Mitaka	Newton	Ocata	Pike	Queens	Rocky
Nova	Nova	Nova	Nova	Nova	Nova	Nova	Nova	Nova	Nova	Nova	Nova
Glance	Glance	Glance	Glance	Glance	Glance	Glance	Glance	Glance	Glance	Glance	Glance
Horizon	Horizon	Horizon	Horizon	Horizon	Horizon	Horizon	Horizon	Horizon	Horizon	Horizon	Horizon
Keystone	Keystone	Keystone	Keystone	Keystone	Keystone	Keystone	Keystone	Keystone	Keystone	Keystone	Keystone
Ceilometer *	Ceilometer *	Ceilometer	Ceilometer	Ceilometer	Ceilometer	Ceilometer	Ceilometer	Ceilometer	Ceilometer	Geilometer	Geilometer
		Cinder	Cinder	Cinder	Cinder	Cinder	Cinder	Cinder	Cinder	Cinder	Cinder
			Heat *	Heat	Heat	Heat	Heat	Heat	Heat	Heat	Heat
			Rally *	Rally	Rally	Rally	Rally	Rally	Rally	Rally	Rally
			·		EC2API	EC2API	EC2API	EC2API	EC2API	EC2API	EC2API
					Magnum *	Magnum	Magnum	Magnum	Magnum	Magnum	Magnum
					Barbican *	Barbican	Barbican	Barbican	Barbican	Barbican	Barbican
					Neutron *	Neutron	Neutron	Neutron	Neutron	Neutron	Neutron
						Ironic?	Ironic ?	Ironic?	Ironic *	Ironic	Ironic
						Mistral ?	Mistral ?	Mistral ?	Mistral *	Mistral	Mistral
						Manila ?	Manila ?	Manila *	Manila *	Manila	Manila
								Trove ?		Qinling ?	Qinling ?
								Murano ?		Watcher ?	Watcher ?

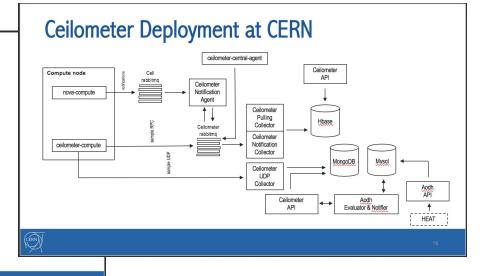

Pilot service

? - Trial service

Milestone Highlights

Nova - Cells

- Allows Nova to scale to thousands of compute nodes
- Biggest Nova Cells deployment
- Moved from 2 cells to +70 cells
- Upgrade from CellsV1 to CellsV2 in 2018

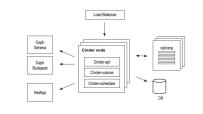


Ceilometer - The Rise & Fall

- OpenStack Ceilometer deployed
- Removed after run it for 3 years. Not scalable and difficult to retrieve data

Ceilometer

- Users are not directly billed
 - Metering needed to adjust Project quotas
- mongoDB backend <u>sharded</u> and replicated
- Collector, Central-Agent
 - Running on "children" Cells controllers
- Compute-Agent
 - Uses nova-api running on "children" Cells controllers


Storage - Cinder, Manila, S3

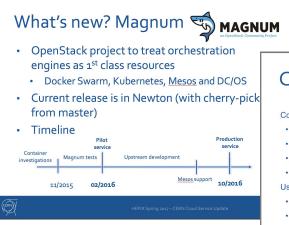
- OpenStack Cinder with Ceph backend (2014)
 - Several volume types available Ο
- OpenStack Manila (Fileshare service). Backed by CephFS (2017)
- S3 available (end 2018)

Cinder

- Ceph and NetApp backends
- Extended list of available volume types (QoS, Backend, Location)
- Cinder nodes are VMs
- Active/Active?
 - When a volume is created a "cinder-volume" node is associated
 - Responsible for volume operations
 - Not easy to replace cinder controller nodes
 - DB entries need to be changed manually
- More about CERN storage infrastructure for OpenStack: https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/cephlife-of-a-petabyte-scale-block-storage-service

Cinder Deployment at CERN

Manila Fileshare service Manila MANILA Pilot since Q4 2016 • CephFS as the backend Off-the-shelf integration with Kubernetes, Swarm... Need for a highly available FS (to replace NFS filer service)


Collaboration with EILER service

•

Share configuration, certificates, etc

Container Orchestration - Magnum

- OpenStack Magnum service available since 2016
- Extremely popular service, +500 clusters

Containers

Container service (magnum):

- Support many versions of kubernetes (1.9.x and 1.10.x in prod
- · Simplify user interface
- · Support for traefik ingress
- RBAC for kubernetes, possible to federate with external cluster

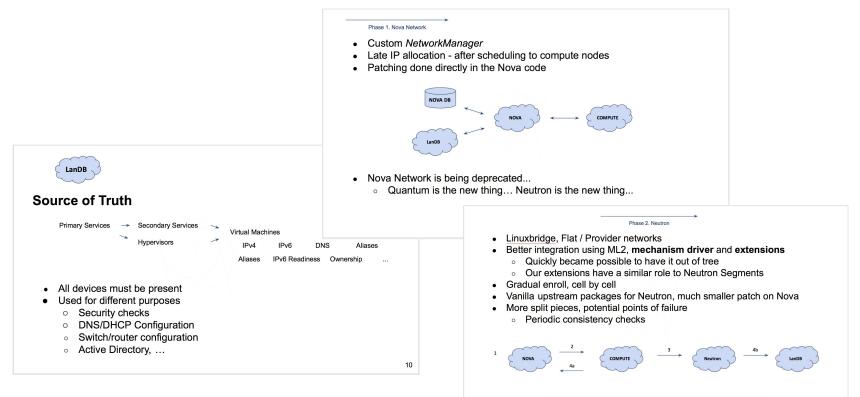
Use cases:

- REANA/RECAST for reusable analysis
- · Continuous Integration
- · Spark on Kubernetes
- · Interactive analysis

Container improvements

Lifecycle operations on container clusters:

- · Host upgrades, OS and container orchestrator
- auto-healing of faulty nodes


Storage and containers:

CERN

- csi-cephfs integration, users will be able to create and mount cephfs volumes to kubernetes pods (create only with admin creds)
- · manila provisioner, end users will:
 - · create shares with cephfs as backend
 - · mount them to pods with csi-cephfs

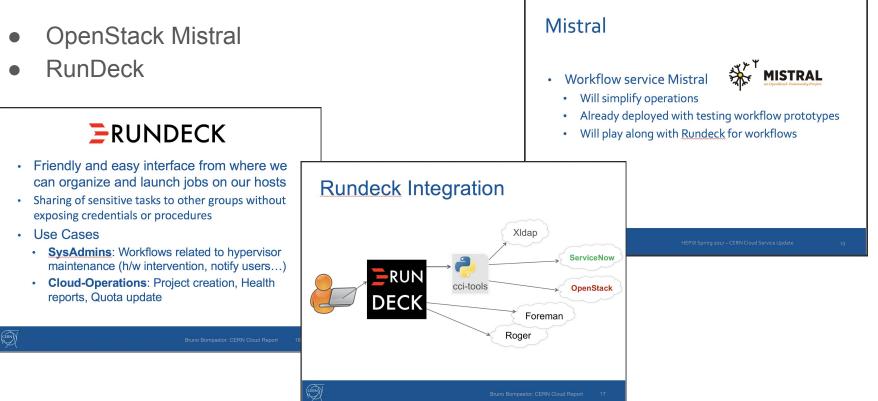
HEPIX Spring 2018 – CERN Cloud Service Update 18

Networking - Nova-network to Neutron

13

Baremetal Provisioning - Ironic

- In production since 2018
- All new hardware is enrolled using Ironic. +1700 nodes managed by Ironic
- Existing hardware will be enrolled into Ironic during 2019



Meltdown/Spectre/L1TF

Reboot campaigns and performance impact

Operations - Rundeck and Mistral

Operations

- Experience growing/managing the Infrastructure during the last 6 years
- Several upgrades during this journey
 - OpenStack release cycle is every 6 months!
 - SLC6 to CC7 upgrade
 - CC7 upgrades
- Supported for few years KVM and HyperV in the same infrastructure
 - Migrated CVI VMs to OpenStack HyperV and then to OpenStack KVM
- Security updates required reboot of all cloud
- Most user management operations are automated
 - project creation; quotas; ...
 - VM expiration

2019 - ... What's next?

Splitting the Infrastructure into 2 Regions

https://techblog.web.cern.ch/techblog/post/region-split/

CERN Cloud Infrastructure

- (2013) We decided to offer only one region!
 - Wigner datacentre was exposed to users as 2 AVZs
 - Direct project mapping for the compute use-case
- (2013) Why?
 - At that time was important to offer only one endpoint to users (Still is...)
 - It's more simple to manage one small cloud than 2 small clouds
 - Cells allows to scale Nova to thousand of nodes
 - No real advantage in having another region...

CERN Cloud Infrastructure

- What changed?
 - It's more simple to manage two small clouds than 1 large cloud
 - Deploy a new configuration change
 - Upgrades
 - High impact/visibility when something goes wrong
 - Nova-network -> Quantum -> Neutron
 - Neutron is not Nova cell aware
 - Neutron relies in a single RabbitMQ cluster
 - Challenge to scale!
 - Use cases are now very well defined
 - Compute VS services

Preemptible Instances

- Public Clouds
 - Based on different pricing/SLA considering resource availability
 - Reserved instances vs spot-market
- Private Clouds
 - Quotas are hard limits. Leads to a reduction in resource utilization
 - Preemptible instances
 - Projects that exhausted their quota can continue to create instances
 - Opportunistic workloads
 - Low SLA
- Preemptible Instances Workflow in OpenStack Nova
 - The creation of a non preemptible VM fails because there aren't available resources
 - Instances that fail with "Nova Valid Host", go to "PENDING" state instead of "ERROR"
 - The Reaper service is notified and it tries to free the requested resources
 - Rebuild the instance
 - Or change instance state to "ERROR"

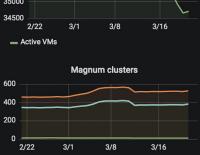
Other Challenges

- Leveraging Container Orchestration to deploy OpenStack control plane
- Re-enroll existing physical resources into OpenStack Ironic
- Introduce SDN
- Dynamic resource provisioning based in Compute Nodes load

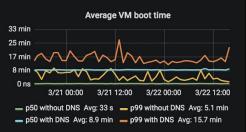
Cloud resources

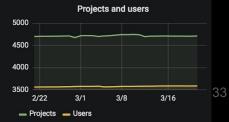
✓ Resource overview by time





1.4





- dcos Current: 11 - kubernetes Current: 370

- mesos Current: 2 - swarm-mode Current: 143

Total VMs

Summary

- During the last 10 years, resource management and deployment model changed completely
 - From Virtualization and Server consolidation to a Cloud Infrastructure
 - From Baremetal to VMs, to managed Baremetal to Containers
- Continue to adapt the Infrastructure to the new technologies and requirements
 - Iterative approach to introduce new services, new functionality
 - Continue to explore new approaches to deploy/manage a large infrastructure
 - Control Plane managed by kubernetes
 - New regions
 - SDN

Is serverless the new model?

https://openstackdayscern.web.cern.ch

www.cern.ch

Credits

- Used slides from several authors
 - Arne Wiebalck
 - Belmiro Moreira
 - Domenico Giordano
 - Jan Van Eldik
 - Luis Pigueiras
 - Ricardo Rocha
 - Spyridon Trigazis