

How Fair is my Fair-Sharing?

Exposing Some Hidden Behavior Through Workload Analysis

Fréderic Azevedo, Dalibor Klusáček, and Frédéric Suter

IN2P3 Computing Center / CNRS Villeurbanne, France

HEPiX Spring Workshop March 27, 2019

The IN2P3 Computing Center

The French Tier-1 center for WLCG

also a Tier-2

< arr 35,000 (virtual) cores 340PB of storage

 $\begin{array}{l} \text{80 scientific collaborations} \Longrightarrow \\ \text{2,500+ users} \end{array}$

Model	#Nodes	#vCores / Node	#vCores				
Intel Xeon E5-2670 0 @ 2.60GHz	24	32	768				
Intel Xeon Silver 4114 @ 2.20GHz	241	40	9,640				
Intel Xeon E5-2680 v2 @ 2.80GHz	149	40	5,960				
Intel Xeon E5-2680 v3 @ 2.50GHz	124	48	5,952				
Intel Xeon E5-2650 v4 @ 2.20GHz	232	48	11,136				
Total	770		33,456				

Operated by Univa Grid Engine

Parallel jobs: 512 cores without hyper-threading in 16 nodes

GPU-based jobs: 40 K80 and 24 V100 GPUs

► Large memory jobs: 1 node with 40 cores and 1.5TB of memory

A Typical HEP Workload

- Dominated by the four LHC experiments
 - About 55% of the allocated resources

A vast majority of sequential jobs

- 85% sequential
 - Monte-Carlo simulations
- 15% multi-core
 - Limited to a single node (8 or 16 cores)
 - Submitted by two groups (ATLAS and CMS)
 - Represent 50+% of the residency time
- Data-driven jobs
 - Heavily depend on storage subsystems
 - GPFS, HPSS, iRODS, dCache, XrootD

Scheduling Principle and Objectives

Principle

- Groups express pledges every year (as a computing power in HS06)
 - ▶ Well defined for LHC experiments, more approximative for small groups
- The sum of all pledges defines what CC-IN2P3 has to deliver
 - Condition the purchase of new hardware
- Each group gets a proportional share of this
 - Defines an consumption objective
 - Used by the job scheduler as a basis of its Fair-Share policy

Scheduling Principle and Objectives

Principle

- Groups express pledges every year (as a computing power in HS06)
 - ▶ Well defined for LHC experiments, more approximative for small groups
- The sum of all pledges defines what CC-IN2P3 has to deliver
 - Condition the purchase of new hardware
- Each group gets a proportional share of this
 - Defines an consumption objective
 - Used by the job scheduler as a basis of its Fair-Share policy

#1 Objective

Satisfy all the user group pledges

#2 Objective

Maximize the utilization of the machines

How Fair is the Fair-Share ?

At "Macro" scale

- The overall fairnees operational objective is respected
- Pledges are served
- From a 3-month to 1-year granularity

At "Micro" scale

- Operators act on scheduling
- Fix fair-share transient issues
 - Boost or block jobs/users/groups

How Fair is the Fair-Share ?

At "Macro" scale

- The overall fairnees operational objective is respected
- Pledges are served
- From a 3-month to 1-year granularity

At an intermediate scale

- What about fairness at 1-day, 1-week, or 1-month granularity?
- Is the Quality of Service the same for all our users?
 - Spoiler alert: Answer is NO!
- What can be done to improve fairness?

At "Micro" scale

- Operators act on scheduling
- Fix fair-share transient issues
 - Boost or block jobs/users/groups

Outline

Introduction

• Analysis of the Workload(s)

Overall Utilization Grid vs. Local Jobs Origins of the Unfairness

• Reconfiguration of the Batch System Redefinition of the Scheduling Queues

Quota Relaxation Simulation Results

• Conclusion and Future Work

Overall Utilization

Maximize the utilization of the machines: DONE! (over 90%)

- Grid
 - 1,495,323 jobs
 - 28% are multi-core (i.e., 8-core) jobs
 - Use 3.45 more resources

- Local
 - 1,174,078 jobs
 - ▶ 98% are sequential

Origins of the Unfairness

Origins of the Unfairness

Origins of the Unfairness

And also share-related priorities and stringent quotas

Outline

Introduction

• Analysis of the Workload(s)

Overall Utilization Grid vs. Local Jobs Origins of the Unfairness

Reconfiguration of the Batch System Redefinition of the Scheduling Queues

Quota Relaxation Simulation Results

• Conclusion and Future Work

Redefinition of the Scheduling Queues

Queue name	CPU Time	Time	Memory	File Size	Cores
mc-long	48h	58h	3.6G	30G	33,568
mc-huge	72h	86h	8G	30G	9,040
mc-longlasting	202h	226h	3G	30G	19,800
long	48h	58h	4G	30G	33,568
huge	72h	86h	10G	110G	10,418
longlasting	168h	192h	4G	30G	3,931

Sequential vs. Multi-core

- But Multi-core = Grid \sim even higher priority
- Walltime not considered at all
- No "Resource pools"

Redefinition of the Scheduling Queues

Queue name	CPU Time	Time	Memory	File Size	Cores
mc-long	48h	58h	3.6G	30G	33,568
mc-huge	72h	86h	8G	30G	9,040
mc-longlasting	202h	226h	3G	30G	19,800
long	48h	58h	4G	30G	33,568
huge	72h	86h	10G	110G	10,418
longlasting	168h	192h	4G	30G	3,931

Sequential vs. Multi-core

- But Multi-core = Grid \sim even higher priority
- Walltime not considered at all
- No "Resource pools"

Queue name	CPU Time	Time	Memory	File Size	Cores
local-short	6h	7h	4G	30G	20,000
local-medium	24h	28h	4G	30G	15,000
local-long	48h	58h	4G	30G	10,000
grid	48h	58h	3.6G	30G	25,000
huge	72h	86h	10G	110G	10,000
longlasting	202h	226h	3G	30G	5,000

Quota Relaxation

- Existing large quota ~> Harmless jobs
- Classify local jobs according to the fraction of resources they can use
 - ▶ 0-5%
 - ▶ 5-10%
 - ▶ 10+%
- Conservative relaxation
 - ▶ 0-5% \sim increase by 5%
 - 5-10% \sim increase by 10%
 - ▶ $10+\% \rightsquigarrow$ increase by 20%
- Extreme relaxation
 - a.k.a. make your storage admin crazy
 - ▶ 0-5% \sim increase by 100%
 - ▶ 5-10% \rightsquigarrow increase by 200%
 - ▶ $10+\% \sim increase$ by 300%

Simulation Results

- Replay the entire workload in simulation
- Rely on the Alea job scheduling simulator
 - Models the algorithms, queues, quotas, ...
- Have to first check that the simulation captures the main trends of the original schedule ~> Baseline version

Redefinition of the scheduling queues

			Percentiles			
Workload	Scenario	Average	50 th	75 th	90 th	Maximum
Crid	Baseline	1h 10m	0s	8m 18s	1h 18m	15d 21h 54m
Grid	Modified	1h 45m	0s	14m	2h 2m	14d 4h 33m
Lacal	Baseline	2h 3m	4m 30s	1h 40m	6h 40m	11d 21h 41m
Local	Modified	1h 58m	8s	1h 10m	6h 20m	4d 19h 6m

Redefinition of the scheduling queues

			Percentiles			
Workload	Scenario	Average	50 th	75 th	90 th	Maximum
Crid	Baseline	1h 10m	0s	8m 18s	1h 18m	15d 21h 54m
Griu	Modified	1h 45m	0s	14m	2h 2m	14d 4h 33m
Lacal	Baseline	2h 3m	4m 30s	1h 40m	6h 40m	11d 21h 41m
LOCAI	Modified	1h 58m	8s	1h 10m	6h 20m	4d 19h 6m

Quota Relaxation

			Percentiles			
Workload	Scenario	Average	50 th	75 th	90 th	Maximum
Crid	Conservative	1h 53m	0s	16m	2h 21m	13d 15h 21m
Griu	Extreme	1h 57m	4s	17m 41s	2h 47m	14d 4h 41m
Local	Conservative	1h 39m	2s	45m 40s	5h 8m	3d 16h 58m
LUCAI	Extreme	1h 14m	1s	21m 55s	2h 30m	3d 23h 11m

Outline

Introduction

• Analysis of the Workload(s)

Overall Utilization Grid vs. Local Jobs Origins of the Unfairness

• Reconfiguration of the Batch System Redefinition of the Scheduling Queues

Quota Relaxation Simulation Results

• Conclusion and Future Work

Conclusion

Batch systems are complex

- Many configuration parameters
- Have to know understand your workload
- Study different options
 - Redefine queues
 - Leverage job duration
 - Relax quotas

Leverage simulation to assess the impact of modifications

It's a production system, disruption is forbidden

Future Work

LHC grid jobs are always there

- 5,000 slots for ATLAS
- 4,000 slots for CMS
- 2,500 slots for LHCb

 \rightsquigarrow More than 30% of the resources

- What-if these jobs where submitted to a HTCondor pool instead of UGE?
 - Handle HTC with a HTC tool
 - Leave the batch to batch users
 - Two systems to manage
 - Can we still guarantee a 90+% utilization?

