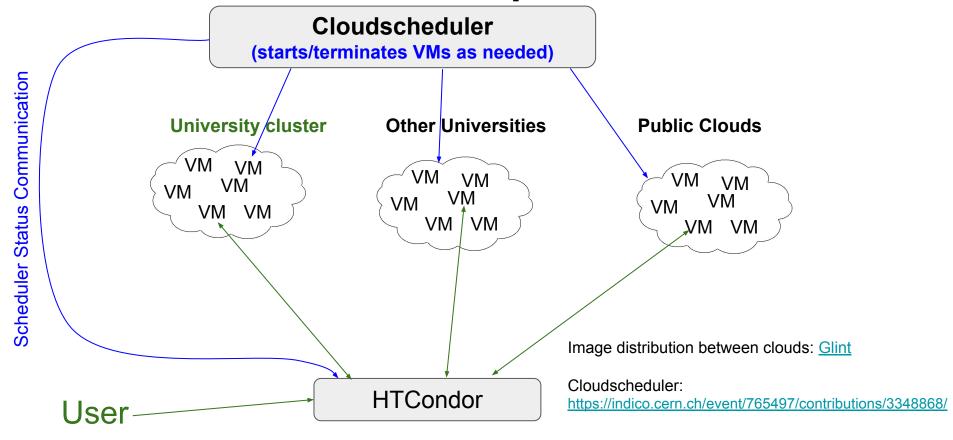
Dynafed data federator as site SE

Marcus Ebert

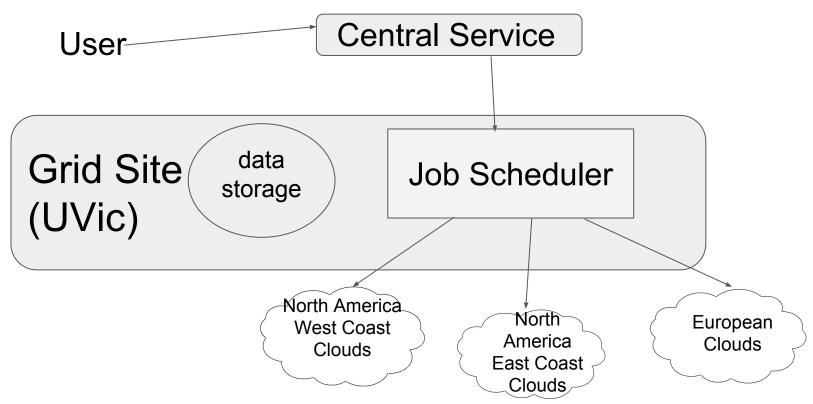
mebert@uvic.ca

on behalf of the HEP-RC UVic group:

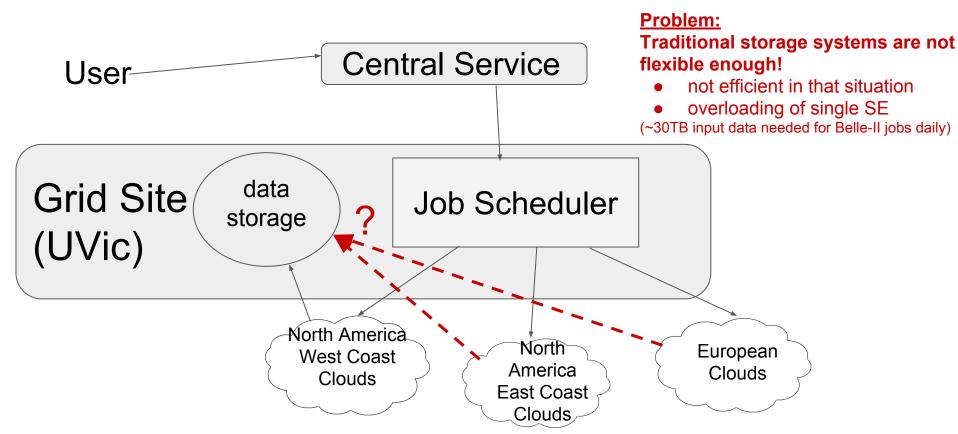
Frank Berghaus, Kevin Casteels, Colson Driemel, Colin Leavett-Brown, Michael Paterson, Rolf Seuster, Randall Sobie (University of Victoria)

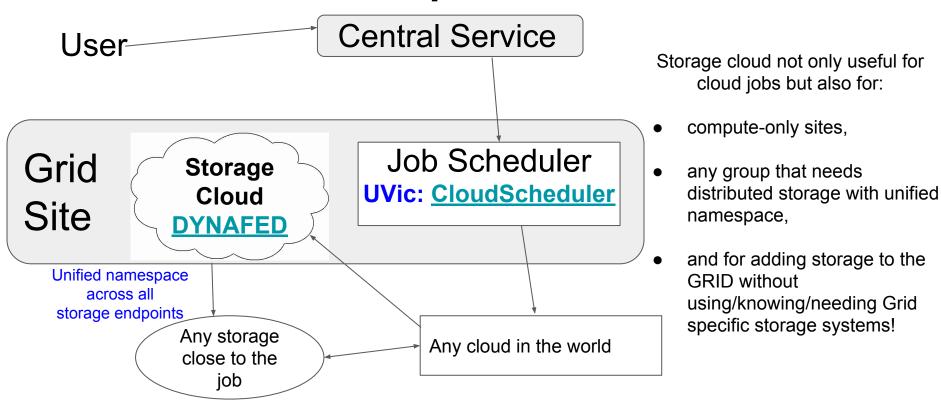

Fernando Fernandez Galindo, Reda Tafirout (TRIUMF)

Why do we want (need) Dynafed


UVic Grid Site:

- run jobs for Atlas and Belle-II
- Cloud computing using distributed cloud systems
 - private and public/commercial clouds
 - Openstack, OpenNebula, Amazon, Microsoft, Google
- Clouds in production are distributed throughout Northern America and Europe currently
- Possibility to integrate other clouds anywhere
 - used resources on an Australian cloud before
- CE: HTCondor + CloudScheduler
 - o more about cloudscheduler in Rolf's talk: https://indico.cern.ch/event/765497/contributions/3348868/
- SE: so far traditional dCache site
 - local cluster for distributed compute....


Multi-cloud compute at UVic


Distributed cloud computing for the GRID

Distributed cloud computing for the GRID

Distributed cloud-storage and cloud-compute for the GRID

Dynafed data federator as site SE

HEPiX Spring Workshop, 03/27/2019

What is Dynafed

- redirector for a dynamic data federation, developed by CERN-IT (fabrizio.furano@cern.ch)
 - o for data transfers, client is redirected to a storage element with the data
 - this can be done depending on geographic location (GeoIP)
 - storage elements closer to the job are preferred
- access through http(s)/webdav(s)
- can federate existing sites <u>without</u> configuration changes at sites
 - storage needs to be accessible through http(s)/dav(s)
 - world wide distributed data can be made accessible under common name space and through a single endpoint
- can also directly access S3/Ceph and Azure based storage
 - no credentials visible to the client
 - preauthorized URL with limited lifetime is used to access files on the storage
- X509/VOMS based authentication/access authorization can be used with dynafed
 - http://HEPrc.blogspot.com for grid-mapfile based authentication/authorization
 - different posts have also links to dynafed installation instructions in our TWiki

Dynafed@Victoria HEPRC group

- different installations at CERN, TRIUMF, and UVic
 - CERN: Atlas testing
 - Victoria: Belle-II production (r/o) and Atlas testing
 - TRIUMF: testing for monitoring and storage reporting development
- different storage solutions behind dynafed (for the instance at UVic):
 - existing GRID sites: our dCache and other Belle-II sites
 - CEPH storage: 50TB in our group CEPH, some TB at CERN
 - Amazon S3 (some hundreds of GB up to some tens of TB)
 - Minio in VMs on different clouds (some hundred GB)
 - https://www.minio.io/, used for testing

Our Dynafed usage for Belle-II

- Belle-II does not support gfal2 so far
 - only srm access for remote storage access possible
 - in addition, can also use data in the local file system (!)
 - unfortunately only for read access, not write access
- use gfalFS to mount everything behind Dynafed in the local file system tree
 - fuse mount

```
gfalFS -s ${HOME}/b2data/belle davs://dynafed02.heprc.uvic.ca:8443/belle
```

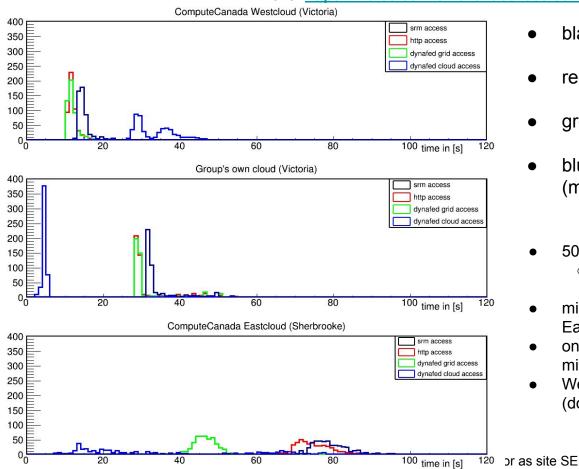
- used successful in production since end of 2017
- gfal2 and http support will come to Belle-II framework very soon
 - in testing now
 - will enable dynafed usage for writing and removes the need of gfalFS

Testing gfalFS/dynafed

CHEP2018: https://indico.cern.ch/event/587955/contributions/2936834/

Victoria - Sherbrooke: 3853km

Sherbrooke - BNL: 515km


Victoria : 1xminio, 1xown Ceph, 1 Belle-II SE, 1x shared Openstack, 1x own Openstack

Sherbrooke: 1x minio, 1x shared Openstack

BNL : 1x Belle-II SE

Data access on clouds

CHEP2018: https://indico.cern.ch/event/587955/contributions/2936834/

- black: access to site SE (Victoria) using srm
- red: access to site SE (Victoria) using http
- green: access to site SEs using dynafed
- blue: access to object stores using dynafed (minio or Ceph)
- 500 3GB files copied to a worker node VM
 - copied to /dev/shm to not rely on virtual disk access
- minio "storage disk" is on network storage for Eastcloud, on local disk for our own cloud
- on Westcloud, minio and Ceph are accessible with minio on our own cloud
- Westcloud VMs have direct access to the site SE (don't need to go through Openstack routing)

Our Dynafed usage for Atlas

- in testing currently
- much progress in Rucio to support Dynafed
- functional tests work
 - redirection
 - reading
 - writing
 - deleting
- some things are missing for production
 - checksum support
 - third party copy
 - space awareness, reporting and accounting

Our Dynafed usage for Atlas

- in testing currently
- much progress in Rucio to support Dynafed
- functional tests work
 - redirection
 - reading
 - writing
 - deleting
- some things are missing for production
 - checksum support
 - third party copy
 - space awareness, reporting and accounting

Problems Atlas/Rucio faces will also be problems for Belle-II and need to be solved before Dynafed can replace traditional Grid SEs.

checksum:

- problem is difference in how checksums are handled on the Grid and on object stores
- Grid:
 - client calculates checksum and transfers file
 - client ask storage to get the checksum
 - client compares checksums and makes decision about file (ok or delete)
 - experiments decided to use adler32
- object stores:
 - o calculate checksum and transfer file together with the checksum to the storage
 - storage system saves file and keeps it if local checksum and transferred checksum are identical, otherwise gives failure for file transfer
 - uses md5
- Dynafed developers are working on general checksum support
- DPM developers also work on supporting both methods
 - dCache has it already implemented (v5.x)

third party copy (TPC):

- implemented in latest release 1.4.x
- implementation is script based
 - different scripts for pull/push
 - on request executes specified script
 - you can do whatever you prefer in the script to do the copy
 - a way to support checksums during file transfers
 - transfers between endpoints using different protocols possible
 - e.g. between dynafed and plain xrootd site
 - if endpoint supports redirection, then dynafed redirects copy directly to endpoints
 - otherwise dynafed acts as client for TPC
- participate in WLCG TPC DOMA (http)
 - testing sites to have http/webdav based TPC working between all sites
 - we should have it working very soon for our Dynafed instance
 - just matter of correct configuration now

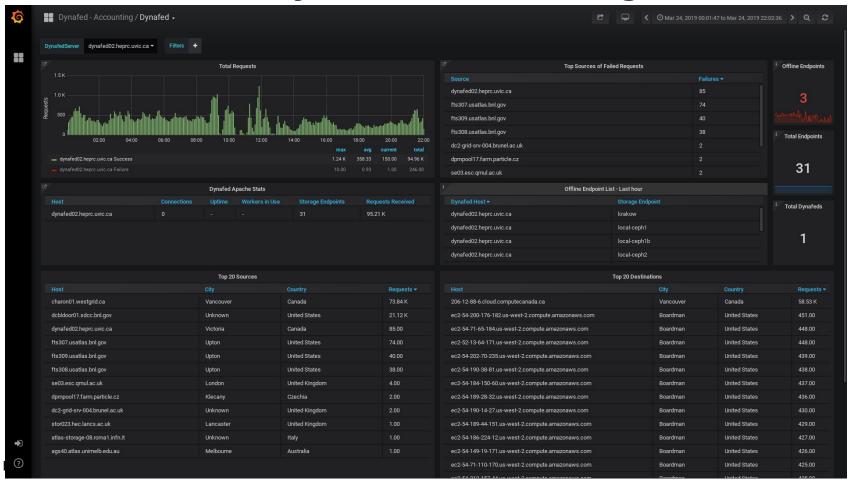
space awareness:

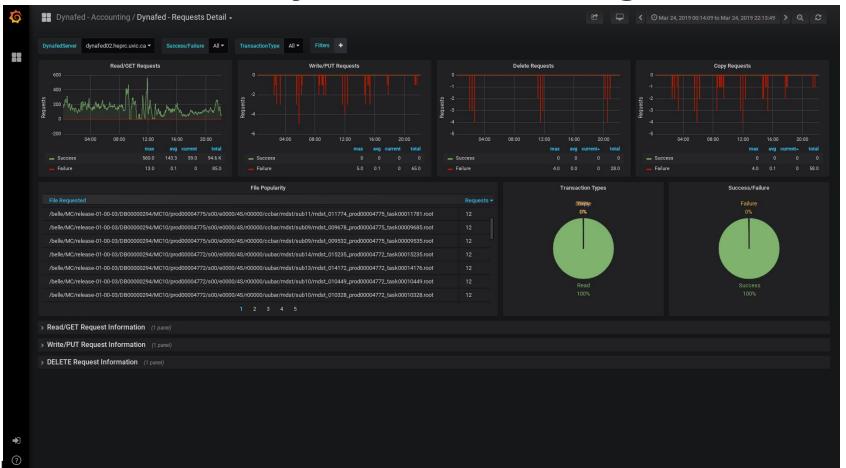
- Dynafed can be used for writing
 - same logic like for reading: use nearest site based on GeoIP db
 - o problem: endpoint is used even if not enough space available
- <u>solution:</u> we developed a system that queries all endpoints for free/used storage and stores information in memcache until next query (https://github.com/hep-gc/dynafed_storagestats)
 - external scripts executed via crond
- supports Azure, S3, WebDav (RFC4331)
 - DPM and dCache supporting RFC4331 conform queries
 - only in latest releases, many sites still run on old versions....
 - ceph-admin and AWS cloudwatch based queries supported too
- at write:
 - create list of write-enabled endpoints sorted by GeoIP
 - get file size from write request
 - remove endpoints that do not have enough free storage space available
 - redirect write request according to remaining list of endpoints

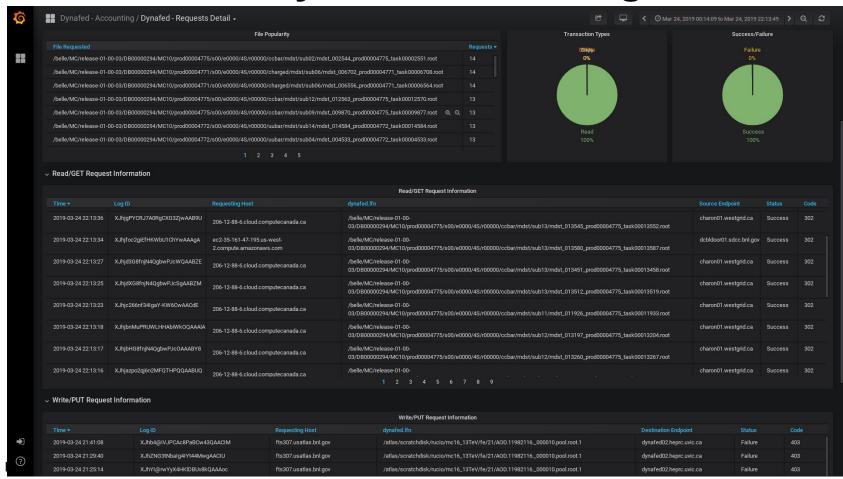
space awareness:

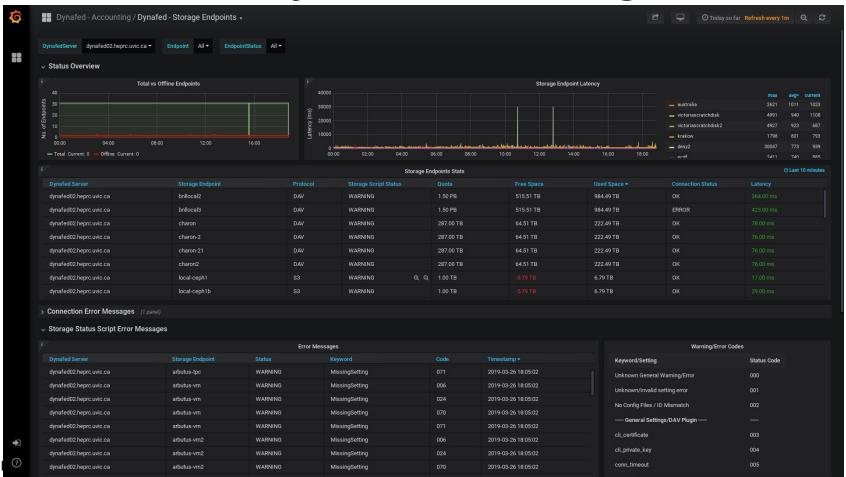
- Dynafed can be used for writing
 - same logic like for reading: use nearest site based on GeoIP db
 - o problem: endpoint is used even if not enough space available
- <u>solution:</u> we developed a system that queries all endpoints for free/used storage and stores
 information in memcache until next query (https://github.com/hep-qc/dynafed_storagestats)
 - external scripts executed via crond
- supports Azure, S3, WebDav (RFC4331)
 - DPM and dCache supporting RFC4331 conform queries
 - only in latest releases, many sites still run on old versions....
 - ceph-admin and AWS cloudwatch based queries supported too
- at write: Implemented in latest testing version of Dynafed, to be released in stable soon!
 - create list of write-enabled endpoints sorted by GeoIP
 - get file size from write request
 - remove endpoints that do not have enough free storage space available
 - redirect write request according to remaining list of endpoints

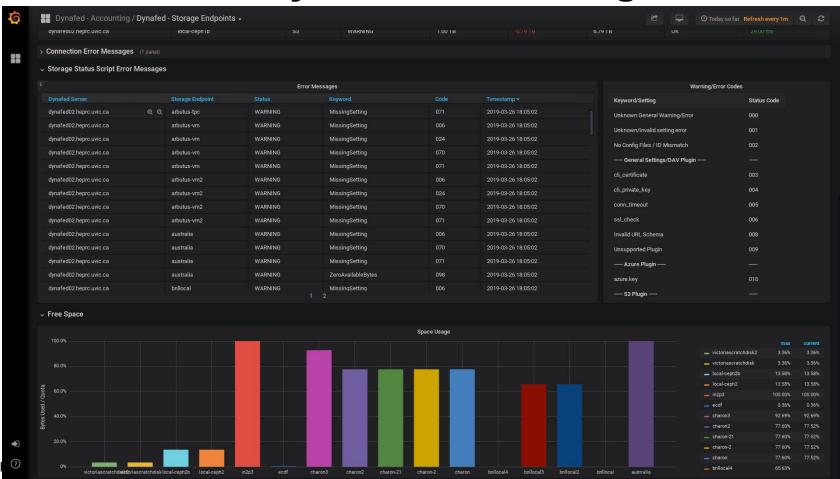
space reporting and accounting:


- json based
 - have json file in specific format and location on the storage
 - lists VO, VO disk allocation, used space, free space,....
 - needs to be created automatically
- same system that does the free/used space collection can also create such json file automatically
 - can also write information out in different formats to be processed externally for more complicated setups (e.g. having multiple copies of files) or endpoint specific storage statistics


Other development


monitoring:


- we developed own monitoring
 - source of file request
 - redirection endpoint
 - files that got requested and how often
 - endpoint storage information (free space, used space, latency, quota,...)
 - timeline for file requests
 - separated for read/write/delete/copy requests


All information available on command line too (via curl).

Other development

to do:

- using file popularity to automatically redistribute most often used files
 - we know how often a file is accessed in the last hours/days/weeks
 - we know from where it is accessed
 - we know which storage is close by and how much space is available on it
 - dynafed has all information to access the endpoint for write operations

Other development

to do:

- using file popularity to automatically redistribute most often used files
 - we know how often a file is accessed in the last hours/days/weeks
 - we know from where it is accessed
 - we know which storage is close by and how much space is available on it
 - dynafed has all information to access the endpoint for write operations

Just need to put some logic in a script and it should work fine....

Summary

- Dynafed is a great tool for us to
 - use distributed storage endpoints for our distributed cloud based Grid computing
 - easily add new "site" storage without most of the GRID storage knowledge needed for traditional Grid storage systems
 - easily integrate object stores to the Grid (Ceph/S3)
 - can easily be used by everyone, in our dynafed instance for Belle/Atlas with own accounting if needed or in an own installation
- nearly at the point where we can replace a traditional Grid SE with Dynafed
 - at least for on-disk storage
- TPC to be tested and configured
- storage space information usable for write decision
- full checksum support only open issue left
- we have very good monitoring available
 - development ongoing for other features we want, e.g. memcache information, open connections, number of http workers,....
- work on automated redistribution between endpoints depending on file popularity

Thank you!

additional information:

HEP-RC blog

Dynafed@CERN

CERN dynafed users forum

CERN dynafed support archive

What is Dynafed

- redirector for a dynamic data federation, developed by CERN-IT (fabrizio.furano@cern.ch)
 - o for data transfers, client is redirected to a storage element with the data
 - this can be done depending on geographic location
 - storage elements closer to the job are preferred

Example:

<u>file:</u> https://dynafed02.heprc.uvic.ca:8443/belle/MC/release-00-09-00/DB00000265/BG15th/phase3/set14/BHWide.tgz <u>meta data:</u> curl -k https://dynafed02.heprc.uvic.ca:8443/belle/MC/release-00-09-00/DB00000265/BG15th/phase3/set14/BHWide.tgz?metalink

on cc-east cloud (Sherbrooke):

http://206.167.180.208:80/belle/MC/...

https://gridftp02.clumeg.mcgill.ca:8443/webdav/belle/DATA/belle/MC/...

http://129.114.33.181:80/belle/MC/...

https://s3-uvic.dev.computecanada.ca/rjsBucket/belle/MC/...

http://elephant132.heprc.uvic.ca/mebucket/belle/MC/...

on cc-west cloud (Victoria):

https://s3-uvic.dev.computecanada.ca/rjsBucket/belle/MC/...

http://129.114.33.181:80/belle/MC/...

https://gridftp02.clumeg.mcgill.ca:8443/webdav/belle/DATA/belle/MC/...

http://206.167.180.208:80/belle/MC/...

Advantages of using S3 based storage

easy to manage

- o no extra servers needed, no need for the whole Grid infrastructure on site (DPM, mysql, apache, gridftp, xrootd, VOMS information, grid-mapfile, accounting, ...)
- just use private/public access key in central Dynafed installation

no need for extra manpower to manage a grid storage site

- small group with budget to provide storage but no manpower for it: Just buy S3 based xTB for y years and put the information into dynafed ---> instantly available to the Grid, no need to buy/manage/update extra hardware
- if university/lab has already large Ceph installation --> just ask for/create a bucket, and put credentials in dynafed

industry standard

- adapted from Amazon by Open Source and commercial cloud and storage solutions
 - HPC, Openstack, Ceph, Google, Rackspace cloud storage, NetApp, IBM,...

scalable

- traditional local file storage servers based on traditional filesystems will become harder to manage/use with growing capacity needs, same for other "bundle" solutions (DPM,...)
- o raid5 dead, raid6 basically dead too, ZFS will get problems with network performance

Access to S3 based storage

glb.locplugin[]: libugrlocplugin_s3.so localceph2 2 http://elephant132.heprc.uvic.ca/mebucket/belle

locplugin.localceph2.xlatepfx: /belle /

locplugin.localceph2.s3.pub_key: <PUPLIC-KEY> locplugin.localceph2.s3.priv_key: <PRIVATE-KEY>

locplugin.localceph2.writable: true

locplugin.localceph2.s3.signaturevalidity: 3600

locplugin.localceph2.s3.region: us-east-1 locplugin.localceph2.s3.alternate: true

gfal-copy davs://dynafed02.heprc.uvic.ca:8443/belle/datadisk/space-usage.json local-file.json

<u>Process:</u> Contact Dynafed --> Dynafed looks where file is ---> Dynafed gets authorized link --> Dynafed redirects client to this link ---> Client access file direct on S3 through that link

http://elephant132.heprc.uvic.ca/mebucket/belle/datadisk/space-usage.json?X-Amz-Signature=2d8fc6013 79eb9e43dc16219a9da11452e8b7c0a22ad98186aaa4fe841b97e53&X-Amz-Algorithm=AWS4-HMAC-SH A256&X-Amz-Credential=TJHJA902TSSJZ659E9D5%2F20171016%2Fus-east-1%2Fs3%2Faws4_reque st&X-Amz-Date=20171016T061053Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host

Authentication/Authorization in Dynafed

- built-in VOMS proxy based authentication
 - o in ugr.conf: glb.allowgroups[]: belle /belle/ rl
 - o includes authentication and authorization
 - does not work in web browsers
- python-module based authentication possible
 - can be used for anything you want to use
 - exit code 0 = access granted
 - exit code 1 = access denied
- implemented usage of grid-mapfile for authentication
 - more info in our blogpost
 - plain text file used for authorization, read by the python module

Authentication/Authorization in Dynafed

- built-in VOMS proxy based authentication
 - o in ugr.conf: glb.allowgroups[]: belle /belle/ rl
 - o includes authentication and authorization
 - does not work in web browsers
- python-module based authentication possible
 - can be used for anything you want to use
 - exit code 0 = access granted
 - exit code 1 = access denied
- implemented usage of grid-mapfile for authentication
 - o more info in our blogpost
 - plain text file used for authorization, read by the python module

Example of access file:

/atlas atlas rlwd /belle belle rlwd /minio admin rldw /localCeph admin rlw

Authentication/Authorization in Dynafed

- built-in VOMS proxy based authentication
 - o in ugr.conf: glb.allowgroups[]: belle /belle/ rl
 - o includes authentication and authorization
 - does not work in web browsers
- python-module based authentication possible
 - can be used for anything you want to use
 - exit code 0 = access granted
 - exit code 1 = access denied
- implemented usage of grid-mapfile for authentication
 - more info in our blogpost
 - plain text file used for authorization, read by the python module
- also implemented alternative version of grid-mapfile usage without the need of a python module
 - you can read about it <u>here</u>

Redirect and direct access with Dynafed

- client tools can get new redirect to another site if anything happens with an already established connection
 - o site outage, network problems at a site,....
- root based tools can speak webdav and access data over network using dynafed
 - TFile *f=TFile::Open("davs://dynafed.server:PORT/belle/path/to/file/file.root")
 - uses external davix libraries

Possibility to open root files over the network with redirect to closest storage (on-site) and seamless switchover to other storage endpoints in case of problems!