
Developing for a Services
Layer at the Edge

 Ben Kulbertis
University of Utah

HEPiX 2019 Workshop
March 25-29, 2019

1

SLATE: Services Layer At The Edge

● NSF DIBBS project (UChicago, UMichigan, UUtah)
● Distributed service orchestration platform
● Kubernetes-based
● Start with a single server and scale as needed
● Share projects/users/applications across

institutions

2

Goal

● Remotely manage edge services at sites with central
expert teams

● Deploy updates more quickly
● Introduce new services more easily
● Save time and effort for local admins

3

Accelerate creation of multi-institution
research platforms

Basic SLATE Architecture
● Lightweight federation and application

catalog layer on top of Kubernetes
○ Security-conscious, site autonomous
○ Sites retain administrative control

● Single entrypoint using institutional
identity

● Simple UNIX-like permissions model
(Users + Groups)

● Application catalog provides natural
boundary between configuration knobs
users actually want to change and
complex Kubernetes configurations

● SLATE is an infrastructure and software 4

Create & manage your own
federation over independently
managed Kubernetes clusters

Deploying Services ("Applications" in k8s)

● A "central" service expert deploys & operates many
sites

● Helm charts and Docker images
● Command line or web interface (in dev)

5

Application Catalog

● Contains all applications that are
packaged to be installed on the SLATE
platform.

● Based on Helm Charts - https://helm.sh

● Developers can create Helm Charts for
the SLATE platform and submit them to
the catalog.

● Incubator and Stable Repositories

● Applications are manually reviewed if
not from known and trusted
sources/organizations.

● Container image security policy
6

Why Helm?

● Kubernetes is complex
○ Application developers write once for users
○ End-users require less deep Kubernetes knowledge

● Environments are different
○ Take advantage of templating for configuration variables
○ Developers need not worry about exact deployment details

● Package management
○ Keep a curated catalog of charts
○ “Push button” deployment and deletion of apps

● This results in improved productivity
○ Improved efficiency for core and application developers

7

Helm Charts
Chart.yaml Values.yaml

Version of Kubernetes in use

apiVersion: v1

Version of application packaged for

installation

appVersion: 3.5.27

description: A Helm chart for configuration

and deployment of the Open Science Grid's

Frontier Squid application.

name: osg-frontier-squid

Chart version

version: 1.0.0

Instance: global
SLATE:
 Logging:
 Enabled: true
 Server:
 Name: atlas-kibana.mwt2.org
 Port: 9200
 Cluster:
 Name: ms-c
 LocalStorage: false
Service:
 Port: 3128
 ExternalVisibility: NodePort
SquidConf:
 CacheMem: 128
 CacheSize: 10000
 IPRange: 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

8

Dedicated Development Environments

Pros

● Little~No setup for developers

● Little sysadmin experience required for
developers, even for advanced configs

● Consistent for all developers

Cons

● Consistency issues with production
(especially without IaC)

● Volatility (single bad deploy brings down
environment for all developers)

● Maintenance (OS management,
“refreshes”, etc.)

● Security / IAM requirements

● Requires dedicated resources

9

Local Development Environments

Pros

● Limited volatility (one developer, one
environment)

● No maintenance (environments are
codified and destructible)

● Developer flexibility (reset environment
at will, modify environment as needed)

● Ease of use (less security barriers, no
need to push code remotely)

Cons

● Environment variability (high
configuration ability required)

● Limited resources (software must run on
local machines)

● Machine clutter (personal machine can
easily become a dedicated
development machine when many
dependencies are required)

10

The Ideal: Best of Both Worlds

11

● Little setup for developers

● Little sysadmin experience required for developers

● Consistent for all developers

● Limited volatility (one developer per environment)

● No maintenance (environments are codified and destructible)

● Flexible (reset environment at will, modify environment as needed)

● Easy to use (few security barriers, no need to push code remotely)

● Runs wherever developers want to develop

Minikube

● Most popular development tool
for Kubernetes

● Limited configuration ability for
kubeadm

● Uses a VM, creating some system
overhead

● Requires kubectl, slate client, on
host

● Storage limitations
● Can’t deploy exact same chart

code on production cluster
12

MiniSLATE
A development environment for SLATE

13

● Create a stand alone, miniature SLATE
federation for development

● Follows an Infrastructure as Code pattern

● Enclosed within Docker
○ Little dependency clutter

■ Python, Docker, Docker-Compose
○ Environment consistency

● Completely Destructible
○ Destroy and recreate at will
○ Mount code from host safely

● Batteries Included
○ Full development kit
○ All required software and useful tools are

installed when the Docker image is built

https://github.com/slateci/minislate

Kubernetes: Containerized

● MiniSLATE utilizes an architecture similar to
https://github.com/kubernetes-sigs/kubeadm-dind-cluster

● Kubernetes is contained within a Docker container, allowing it to be
utilized as a standalone service with little host interference.

● This k8s instance can be utilized from the host or from another networked
container. MiniSLATE packages an entire SLATE environment within a
networked container and utilizes this k8s instance, creating a full SLATE
deployment on your laptop.

● All SLATE and k8s dependencies are containerized, reducing clutter on
the host system.

14

Installing MiniSLATE

$ git clone https://github.com/slateci/minislate.git

Cloning into 'minislate'...

$ cd minislate

$./minislate init

(...)

Default Group: ms-group

Default Cluster: ms-c

DONE! MiniSLATE is now initialized.

$./minislate slate app install nginx --group ms-group --cluster ms-c

Installing application...

...

Successfully installed application nginx as instance ms-group-nginx-default with ID

instance_tey72YzGYuw

15

MiniSLATE CLI Interfaces

$./minislate slate instance list

Name Group Cluster ID

nginx-default ms-group ms-c instance_fXlxlZPtkGY

$./minislate slate app install /mnt/mychart

Installing application...

Successfully installed application mychart as instance

ms-group-chart-default with ID instance_fXlxlZPtkGY

$./minislate shell slate

whoami

root

slate instance list

Name Group Cluster ID

Nginx-default ms-group ms-c instance_fXlxlZPtkGY

Mychart-default ms-group ms-c instance_K1c8fjXpq1T

$ source shell_aliases

$ cd ~

$ slate instance list

Name Group Cluster ID

nginx-default ms-group ms-c instance_fXlxlZPtkGY

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

e0934ffdc141 Ready master 11m v1.14.0

$ minislate destroy -y

Killing minislate_kube_1 ... done

Removing minislate_slate_1 ... done

Removing minislate_kube_1 ... done

Removing minislate_db_1 ... done

Removing minislate_nfs_1 ... done

Command Wrapper Aliases

16

Publishing Charts

1. Submit your chart to the SLATE application catalog with a pull request to
the catalog repository.

2. Initial publications should be placed in ‘incubator’, and once tested will be
moved to ‘stable’.

3. Charts will be reviewed for compliance with the SLATE image security
policy.

4. Charts in the stable repository can be deployed at any SLATE site.

17

1818

● Slides: https://bit.ly/slate-hepix-2019

● MiniSLATE: https://github.com/slateci/minislate

● SLATElite: https://github.com/slateci/slatelite

● Homepage: http://slateci.io

● Slack: http://bit.ly/slate-slack-03

● Discussion list

More Info

Acknowledgements
● University of Chicago

○ Lincoln Bryant

○ Chris Weaver
○ Rob Gardner

● University of Utah
○ Jason Stidd
○ Joe Breen

● University of Michigan
○ Shawn McKee

19

Thank
You

National Science Foundation CIF21 DIBBs: EI: SLATE and the Mobility of
Capability, Grant No. 1724821.

