Network Technology Watch update

Edoardo Martelli, Rolf Seuster

HEPiX2019 – March 2019

Content:

- HEPiX TechWatch Network sub-wg
 - Network technology watch
- [- HEPiX Network Function Virtualization sub-WG
 - Current activities] → covered by Shawn's talk

Introduction

 Internet traffic in next years expected to increase >3x until 2022 w.r.t. 2017

 one main driver 5G, together with its related computing needs (streaming movies etc.)

Introduction

- continues large increase year-by-year in last ~5years
 - down from 1.6x or 2x in early years ...
- technology so far has delivered (as has Moore's law) but the really free lunch is over
 - getting harder and harder to increase bandwidth, but there's still a few low hanging fruits ...
 - → Techwatch group!

HEPiX TechWatch Network sub-wg

Mission:

- follow technology trends
- analyse implications for HEP
- foreseen possible shortcoming
 This sub-WG is part of the HEPiX Technology Watch activity

Links:

- Web site: http://w3.hepix.org/techwatch/network.html
- Twiki: https://twiki.cern.ch/twiki/bin/view/HEPIX/TechwatchNetwork/WebHome

Ethernet evolution

ETHERNET SPEEDS

Ethernet Speed Possible Future Speed

Ethernet in 2019

IEEE P802.3cn 50 Gb/s, 200 Gb/s, and 400 Gb/s over Single-Mode Fiber:

this fast-tracked project will leverage the PAM4 technology developed to support links at these rates currently up to 10km and build upon them to expand their reach to 40km.

IEEE P802.3cp Bidirectional 10 Gb/s, 25 Gb/s, and 50 Gb/s Optical Access PHYs:

this effort will develop bidirectional optical access PHYs for 10GbE, 25GbE, and 50GbE for point-to-point applications where the availability of fibers is limited. Wireless infrastructure is one of the key application spaces that this effort targets.

IEEE P802.3ct 100 Gb/s and 400 Gb/s over DWDM Systems:

this effort will see Ethernet evolve to support reaches up to 80km over a DWDM system. While the main drivers for this effort have been Multi-Service Operators (MSO) and Data Center Interconnect (DCI), it is easy to see how these solutions could be utilized for future mobile network aggregation and core backhaul.

100-200-400Gbps

The 100G Lambda Multisource Agreement (MSA) Group has released draft 2.0 of three specifications targeted to support 100-Gbps per wavelength transmission using PAM4 modulation.

The draft specifications include **100G-FR** and **100G-LR** for **100** Gigabit Ethernet **(GbE)** duplex single-mode fiber links over 2 km and 10 km, respectively, as well as the 400G-FR4 specification for 400GbE duplex single-mode fiber links in a 4x100G wavelength design.

The MSA says it has begun work on a 400G-LR4 specification for a 10 km reach at 400GbE as well.

NRZ(PEM-2) vs PEM-4

doubling information per transportation unit

Can fit into existing networks, but requires new endpoints

- doubles data rate on same hardware w.r.t NRZ
- reduces cost of optical equipment w.r.t. NRZ
- transmitters become more complex (de-mux)

Forward Error Correction

Create extra "check

Adds some latency

> Speed increase due to extra bits

> > Errors occur

Using extra check bits.

Adds some latency

- inflates payload by N bits to protects M bits
 - e.g. 300 / 5140 [RS(544,514,10)] or less for other standards
- can use lower quality optical specs to reduce cost significantly
- requires less retransmits as long as all errors can be corrected
 → overall higher bandwidth
- can show 'cliff' in bandwidth if corrections fail due to too many transmission errors

FEC - Benefits

added latency due to FEC is just O(100ns)

Usage of lower quality optical specifications **significantly reduces** cost and power of solutions

Different FEC algorithms can be used all with different performance properties

- Reed-Solomon: most common in Ethernet
- Higher performance FECs (e.g. used in Coherent optics)
- Incremental latency impact is dependent on implementation and data rate.
- For common Ethernet interfaces latency increase in range of ~50 to 100 ns (equivalent to time of flight over 5-10m of fiber)
- other FEC algorithms available that reduce overhead in size and/or latency
 - e.g. RS(272,257+1,10,7) in new 25G specs
 vs RS(544,514,10) as in 400G specs

Silicon Photonics

- advantages:
 - cheaper to produce
 - lower price will eventually trickle down to end users
 - almost all part on same die
 - allows also for more integration testing
 - manufacturing in existing CMOS production processes
 - lower power consumption than conventional transceivers
 - available since ~2 years:

other manufacturers: Cisco(Luxtera), Intel, GlobalFoundries, IBM (research only?), ...

Intel

12

SC18 highlights + personal experience

SC18 highlights + personal experience

- many archievements during SC18:
 - 1.25 Tbps peak into the show floor (with total of 4.02 Tbps theo. bandwidth)
 - over 100km of fibre cables on show floor
 - SDN everywhere
 - 400Gbps disk-to-disk
 - ~12 100G DTNs worldwide, North America(US+CDN), Europe(AMS+CERN), Asia+Australia
 - was personally involved in CDN DTN,so ...

Canadian part in testing DTNs at SC18

I****//

HEPIX

attempt to do disk-to-disk at 100Gpbs with 'commodity' HW results presented here are a combined collaborative effort between ComputeCanada and HepNetCanada, with lots of help from others!!

SC18-testing DTNs @ 100Gbps inCanada

- reached >92Gbps over ~2 minutes, repeated transfers showed similar results
- my personal conclusion: on modern OS, apply manufacturer's drivers and tunes, apply moderate OS tuning will give already very good results, doing better is hard work (and often yields worse results!)
- Nice resource: from RedHat https://access.redhat.com/sites/default/files/attachments/20150325_network_performance_tuning.pdf from perfSonar/ESNet https://fasterdata.es.net/other's had more success, e.g. https://indico.cern.ch/event/676324/contributions/2967991/

Network Evolution Areas

The following are some of the key areas for HEP Networking R&D:

- Improving efficiency of data transfers
 - TCP BBR version 2 is in the works with promising improvements
 - Exploring alternative protocols for transfers (UDP)
- Caching
 - Data caches co-located with network hubs in a similar way as on commercial CDNs
- Federations/Clouds
 - Overlay networks spanning multiple domains
 - Multi-clouds expanding DC networking via L3VPNs
- Technology
 - SDN/NFV approaches currently looked at by HEPiX NFV WG
 - Compute Agile service delivery on Cloud Infrastructures (OpenStack, Kubernetes)
 - Data Transfers Network resource optimisation dynamically optimising the network based on its load and state (more in Shawn/Ilija)
 - SD-WAN approaches https://www.mode.net/

Other things to look out

- What to expect from Mellanox/NVidia deal?
 Nvidia paid \$6.9b for Mellanox (~\$1b revenue)
 - 3 CPU/GPU(FPGA) interconnects now:
 - NVlink / OpenCAPI (Coherent Accelerator Processor Interface)
 AMD, IBM, Google, Micron, Mellanox (Nvidia as 'contributor')
 - CCIX (Cache Coherent Interconnect for Accelerators) AMD, ARM, IBM, Qualcomm, Xilinx, Huawei, Mellanox
 - CXL (Compute Express Link) Cisco, Dell EMC, Facebook, Google, HPE, Huawei, Intel, Microsoft
- Remote DMA (RDMA) with all its flavours
 - RoCE RDMA over Converged Ethernet, iWARP, ...

Ethernet interfaces

EMERGING INTERFACES AND NOMENCLATURE

	Electrical Interface	Backplane	Twinax Cable	Twisted Pair (1 Pair)	Twisted Pair (4 Pair)	MMF	500m PSM4	2km SMF	10km SMF	20km SMF	40km SMF	80km SMF
10BASE-		T1S		T1S/T1L								
100BASE-				T1								
1000BASE-				T1	Т							
2.5GBASE-		кх		T1	Т							
5GBASE-		KR		T1	Т							
10GBASE-				T1	Т				BIDI Access	BIDI Access	BIDI Access	
25GBASE-	25GAUI	KR	CR/CR-S		Т	SR			LR/ EPON/ BIDI Access	EPON/ BIDI Access	ER/ BIDI Access	
40GBASE-	XLAUI	KR4	CR4		Т	SR4/eSR4	PSM4	FR	LR4			
50GBASE-	LAUI-2/50GAUI-2								EPON/ BIDI Access	EPON/ BIDI Access	BIDI Access	
	50GAUI-1	KR	CR			SR		FR	LR		ER	
100GBASE-	CAUI-10		CR10			SR10		10X10				
	CAUI-4/100GAUI-4	KR4	CR4			SR4	PSM4	CWDM4/ CLR4	LR4/ 4WDM-10	4WDM-20	ER4/ 4WDM-40	
	100GAUI-2 100GAUI-1	KR2 KR1	CR2 CR1			SR2	DR	100G-FR	100G-LR			ZR
200GBASE-	200GAUI-4 200GAUI-2	KR4 KR2	CR4 CR2			SR4	DR4	FR4	LR4		ER4	
400GBASE-	400GAUI-16 400GAUI- 8 400GAUI-4	KR4	CR4			SR16 SR8/SR4.2	DR4	FR8 400G-FR4	LR8 400G-LR4		ER8	ZR

19

Form factors

FORM FACTORS

This diagram shows the most common form factors used in Ethernet ports. Hundreds of millions of RJ45 ports are sold a year while tens of millions of SFP and millions of QSFP ports ship a year.

This diagram shows new form factors initially designed for 100GbE and 400GbE Ethernet ports. All have 4 or 8 lanes and the OBO has up to 16 lanes. The power consumption of the modules is proportional to the surface area of the module.

100G PAM4 DWDM QSFP28

100G DWDM Transceiver

- 2 wavelengths (lanes) on a 50GHz grid
- Transceiver output power -11 dBm
- Minimum required input power -2 dBm
- Dispersion tolerance +/-6 km on G.652 fiber
- High OSNR required (>31 dB)

Requires an active line system to address these parameters

Can be plugged directly into standard switches and NICs

[Source: Smartoptics]

DCI with DWDM PAM4

Embedded in to 100G switch

100G p-t-p embedded over <80km distance based on a cost effective solution

[Source: Smartoptics]

Conclusion

Summary

Network Techwatch:

- 100Gbps becoming commodity, but too many variants
- 400Gbps is out, QSFP-DD seems preferred
- PAM4 and FEC will drive higher speeds and port density
- SC18 demonstrated maturity of 100Gbps servers

[HEPiX NFV WG:

- Exploring applications of SDN and NFV to improve datacentre efficiency
- Preparing white paper to help HEP community understand and adopt SDN/NFV]

References

TechWatch Networking sub-WG

- Web site: http://w3.hepix.org/techwatch/network.html
- Twiki: https://twiki.cern.ch/twiki/bin/view/HEPIX/TechwatchNetwork/WebHome
- Ethernet Roadmap: https://ethernetalliance.org/the-2019-ethernet-roadmap/

NFV working group:

- WG meetings and notes: https://indico.cern.ch/category/10031/
- F2F meeting: https://indico.cern.ch/event/725706/
- WP:

https://docs.google.com/document/d/1w7XUPxE23DJXn--j-M3KvXlfXHUnYgs VUhBpKFjyjUQ/edit?usp=sharing