
BABAR 25th Anniversary Celebration

CKM BABAR achievements

Guy Wormser

LAL, IN2P3/CNRS and Université Paris-Saclay

LABORATOIRE DE L'ACCELERATEUR LA REALER

My story with BABAR

- Initial « Coup de foudre » for CP violation in B decays in 1987
 - May 1988 : My first BABAR talk : a presentation of the potential of future B factories during LAL Orsay bi-annual retreat
- > 1988-1992 : Flirting around
 - > PSI: a project of a symmetric machine was already well advanced(Ralf Eichler et al.), toug dscussions to asymmetrize it
 - CERN in the ISR tunnel
 - DESY in the PETRA ring (« not enough ambitious for DESY »)
- 1993-1999 « The period of true passion
- October 1999 : Separation but we stay in good terms
 - Contribution to pipi/Kpi ratio measurement in 2000, BABAR computing financial crisis
- 2004-2005 : Happy return to home !
- 2007-2012 Leaving the « old lady » for a younger one ! (oh)
 - The SuperB adventure »
- 2013-2018 : Now installed by yet another one (LHCb) but having an intermittent affair with BABAR (finish the update of my 2005 analysis)
- As often in real life, passion changes into tenderness after some 30 years!! But all such souvenirs stay for ever!

Many ways to define « achievements »

- New discoveries
- Improvment in physics knowledge
- Performances compared to initial predictions
- Performances compared to other experiments
- Publications and citations
- Prizes and awards
- Number of PhDs trained
- Tools and methods developped towards the goal
- I will cover only a few of these in rather arbitray manner. Apologies for the topics not covered or if the talk contents is not what was expected!

2008 Nobel prize !!


\sim CP violation in the B system is well described by the CKM mechanism >

Mister « K »

Mister « M »

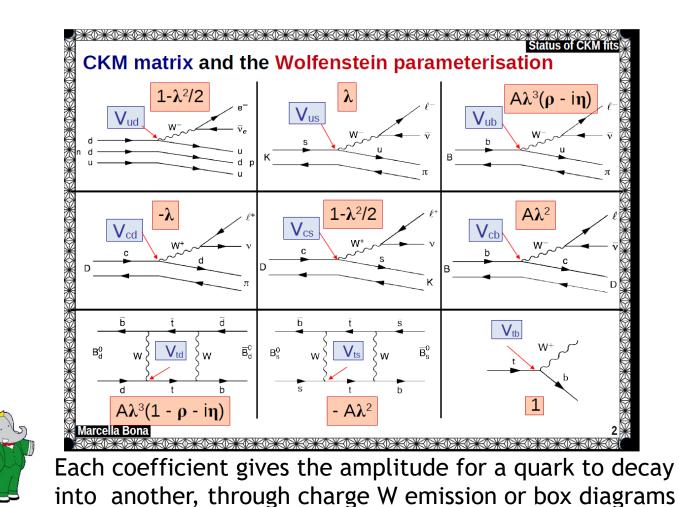
2010 Dirac Prize, 2011 Franklin prize Mister « C » Nicola Cabibbo

Panofsky Prizes20052016Pier OddoneJonathan Dorfan and David Hitlin

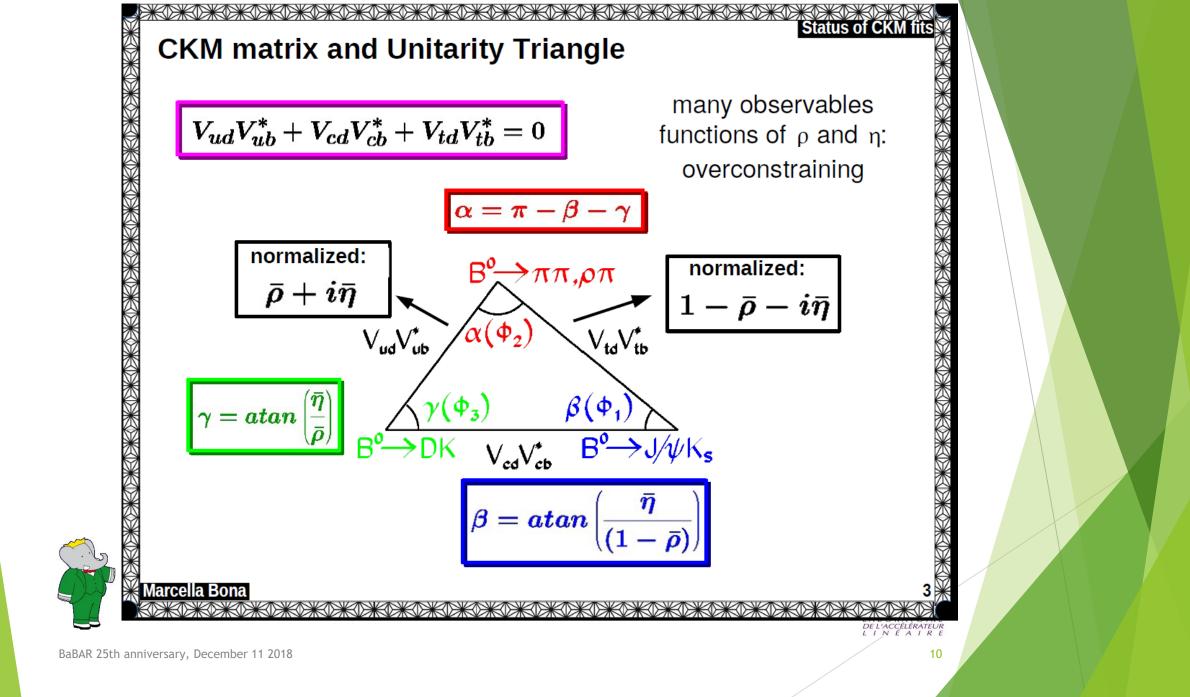
E L'ACCÉLÉRATEUR I N É A I R E

Grandiose initial goal

- CP violation in B decays will pave the way to new physics because
 - SM can not explain the baryon asymmetry in the universe
 - ▶ Many many ways for NP to change the predicted SM CP asymmetries in B decays
 - CP violation in B is a totally virgin field
- The hopes were very high but unfortunately, the « duck is still alive »


CKM physics constitued the core of the B factories program

- **BABAR physics book** (1998) :
 - 482 pages about CKM out of 815 physics related pages: 59%
- Slightly less in the Physics of the B factories (2015):
 - > 236 pages out of 614 physics related pages ie 38 %
- Conclusions :
 - The physics program of the B factories proved to be much richer than originally anticipated
 - The common knowledge of CKM physics increased a lot in the HEP community over time


The Cabibbo-Kobayashi-Maskawa matrix is a 3x3 unitary matrix relating the quarks' flavor and mass eigen-states.

In the SM, the only source of CP violation is due to the imaginary part η

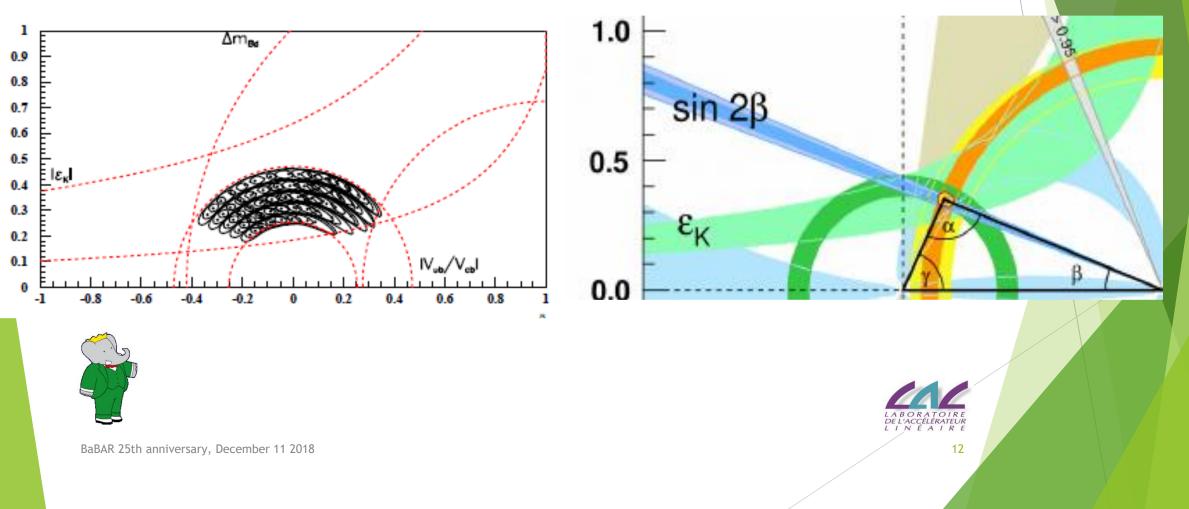
The unitary nature of the matrix allows to draw relationship between its parameters in a form of triangles

New Physics and CKM triangle

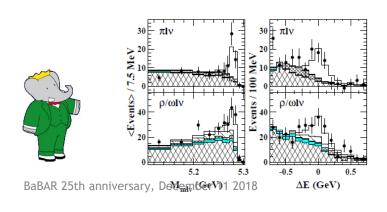
▶ In presence of new physics, the 3x3 CKM matrix can deviate from unitarity!!!

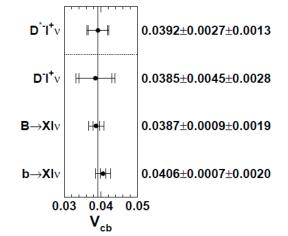
A simple case can be that the true matrix is 4x4

- The goal is then to OVERCONSTRAIN this triangle by measuring all sides and all angles, to find any deviation from SM prediction and any inconsistencies
- Angles are measured by CP violating quantities
- Sides are measured by characteristic B decay processes, or ratio of such processes.

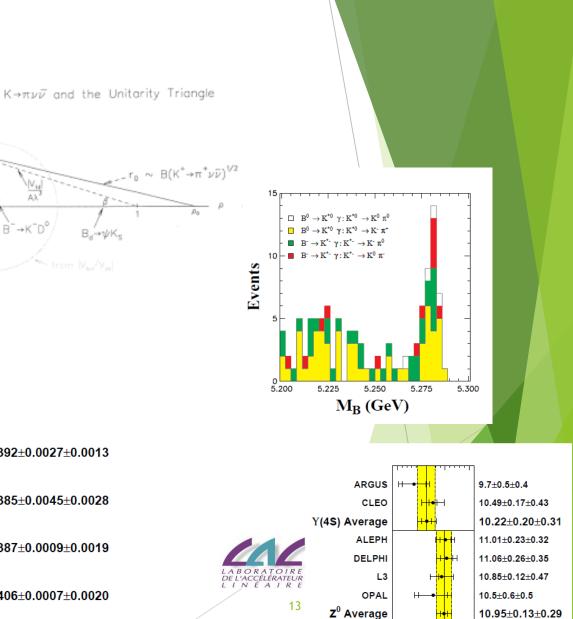


BABAR CKM achievements in a nutshell

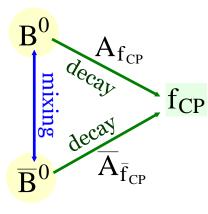

BABAR Physics book , CKM knowledge in1998


Physics of the B factories, CKM knowledge in 2015

ICHEP 1996 (L. Gibbons)


- Vcb OK
- Vub just starting LEP+ CLEO+Argus
- Vtd from K* gamma
- Unitarity triangle not drawn very often, elongated
- Problem with Fb and Bb constants

 $B_{A} \rightarrow \pi \pi$

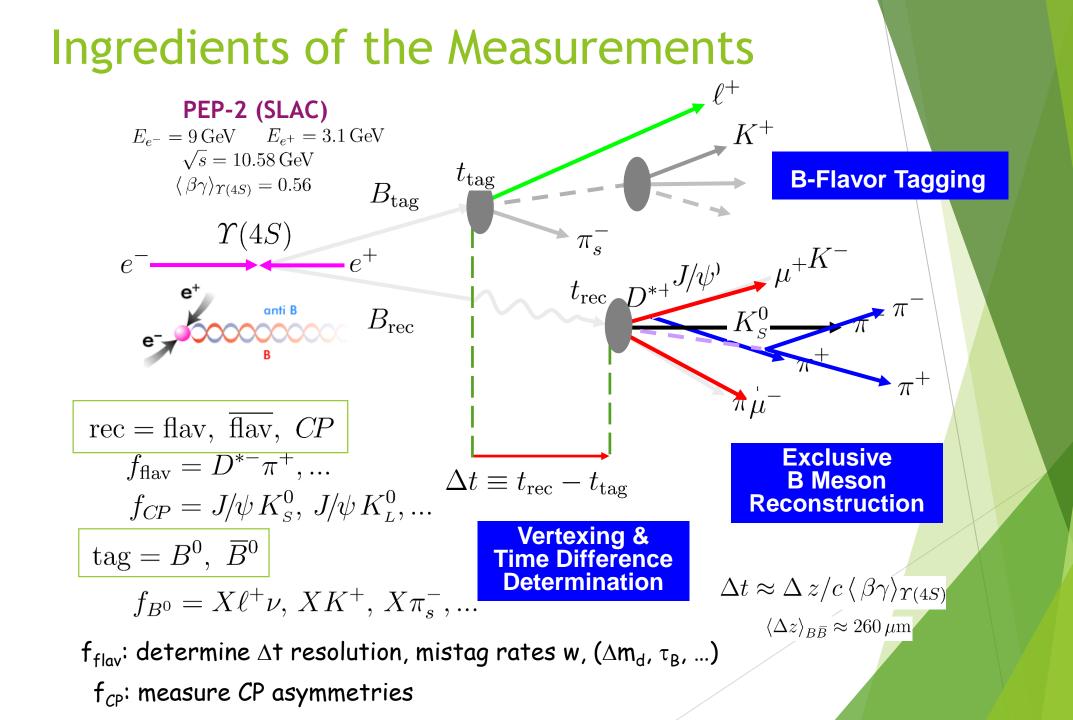

B → K D

9 10 11 12 B(B,b→XIv) (%)

CP from Interference of Mixing and Decay

CP violation results from interference between decays with and without mixing

Time-dependent CP asymmetry:


$$a_{f_{CP}}(t) = \frac{\Gamma(\bar{B}^0_{phys}(t) \to f_{CP}) - \Gamma(B^0_{phys}(t) \to f_{CP})}{\Gamma(\bar{B}^0_{phys}(t) \to f_{CP}) + \Gamma(B^0_{phys}(t) \to f_{CP})}$$
$$= C_{f_{CP}} \cos(\Delta m_d t) + S_{f_{CP}} \sin(\Delta m_d t)$$

 $B \rightarrow J/\psi K_{s,L}$: dominated by single decay amplitude

$$\begin{split} \lambda_{J/\psi K_{S}} &\equiv \frac{q}{p} \frac{A_{J/\psi K_{S}}}{A_{J/\psi K_{S}}} \Box - \frac{V_{tb}^{*}V_{td}}{V_{tb}V_{td}^{*}} \frac{V_{cb}V_{cs}^{*}}{V_{cb}^{*}V_{cs}} \frac{V_{cs}V_{cd}^{*}}{V_{cs}^{*}V_{cd}} \qquad S_{J/\psi K_{S,L}^{0}} = -\eta_{J/\psi} \\ &= 0 \\ \Rightarrow \text{Theoretically clean way (~1\%) to measure Sin2} \beta \end{split}$$

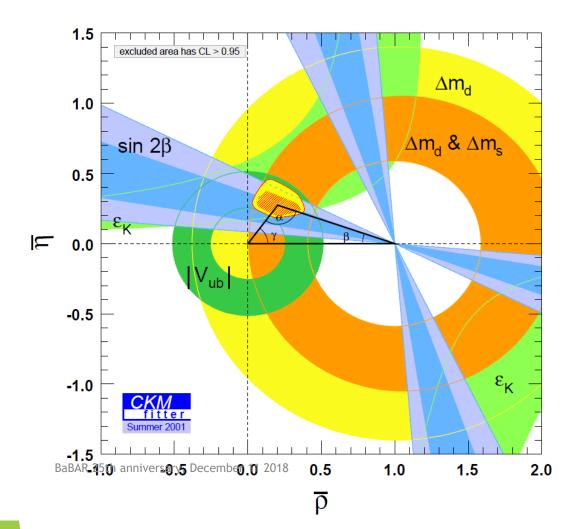
decay mixing qJ_{CP} f_{CP} $=\mid \lambda_{f_{CP}}$, $-2i\varphi_{CF}$ $1 + |\lambda_{f_{CP}}|$ $-2 \operatorname{Im} \tilde{\lambda}_{f}$ S_{f_{CP}} $1 + |\lambda_{f_{CP}}|$

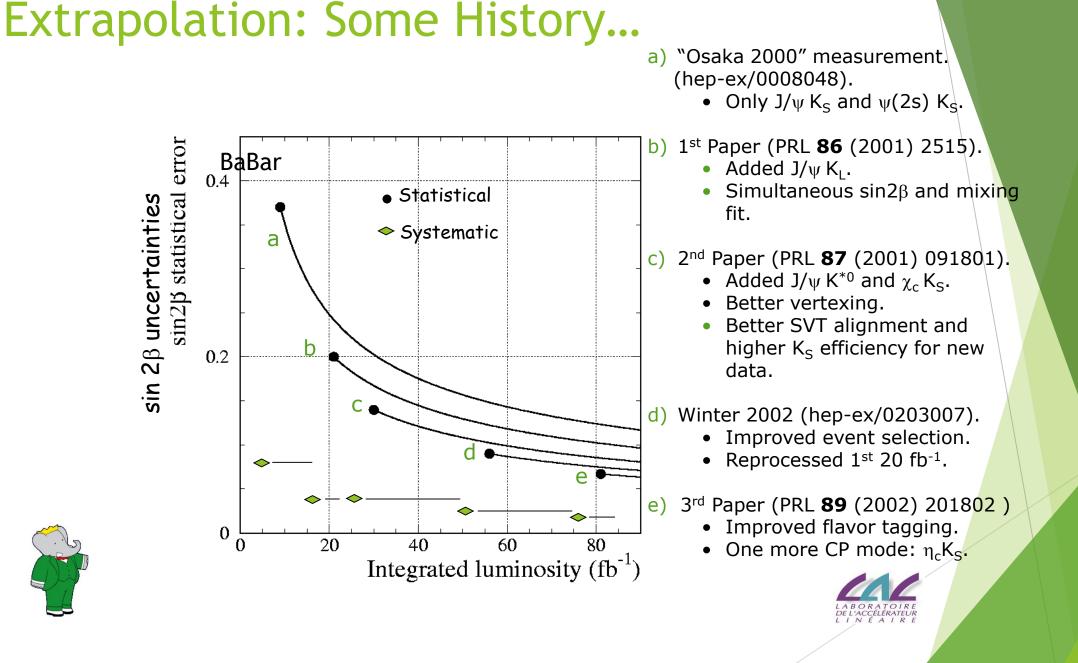
$$S_{J/\psi K_{S,L}^{0}} = -\eta_{J/\psi K_{S,L}^{0}} \sin 2\beta$$

$$C_{J/\psi K_{S,L}^{0}} = 0$$

History of the sin2 β measurement

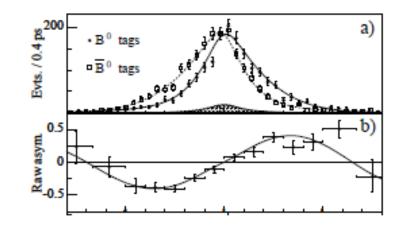
- May 26, 1999 First Collisions in BABAR
- July 31, 2000 Osaka, first measurement of sin2β presented in Osaka at ICHEP2000 ! sin2β=0.12±0.37±0.09
- In February 21, the first publication (in the same journal as BELLE) $sin 2\beta = 0.12 \pm 0.37 \pm 0.09$
- ▶ July 6 2001: sin2B=0.59±0.14(stat)±0.05(syst) (32 fb⁻¹) Phys.Rev.Lett.87:091801,2001
 - **•** This result establishes CP violation in the B system at 4.1 σ level (1159 citations)
- Belle follows (July 23) with 29 fb⁻¹; Phys.Rev.Lett.87(9):091802 (1160 citations)


 $sin2\phi_1 = 0.99 \pm 0.14(stat) \pm 0.06(syst).$


16

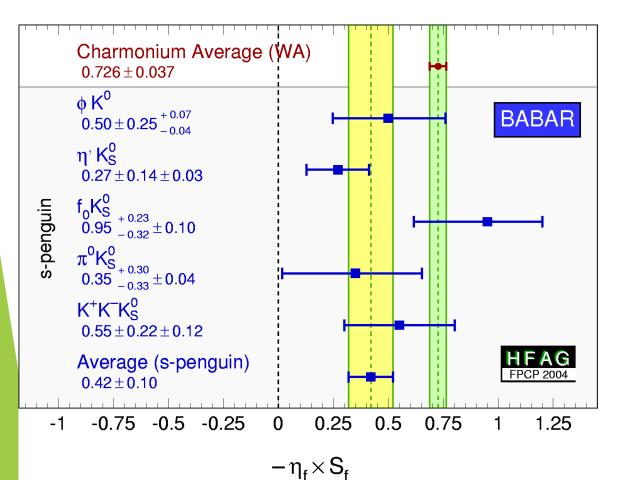
BABAR-PUB-01/01 SLAC-PUB-8777 hep-ex/0102030

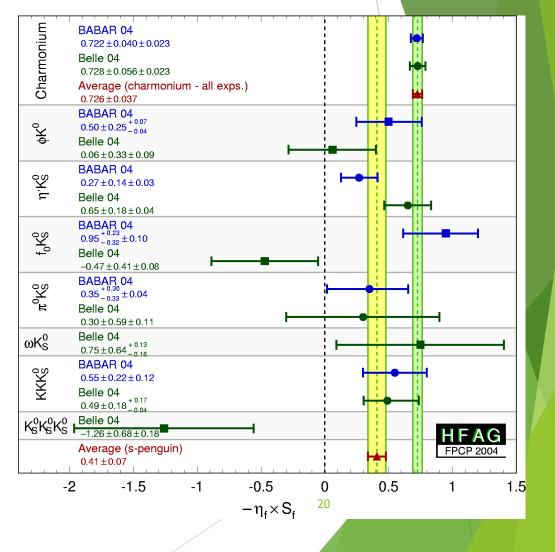
Unitarity triangle in 2001



So far seem to do better than extrapolations predict

2004 a important year for CP physics


Publication of the first REALLY high statistics sin2β paper based on 223 fb⁻¹ (the summer 2001 publication was 32 fb⁻¹!)



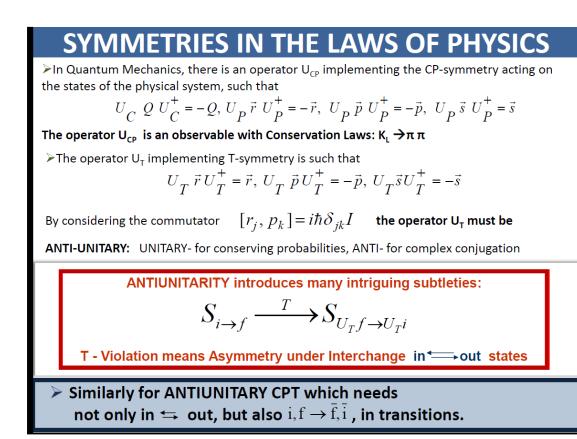
The sin2 β saga in b \rightarrow s transitions

4 years of hope and fears.....

- Summer 2004: 3.8 σ between sin2b (b->c) and sin2b (b->s)
- **>** Summer 2005: 2.8 σ
- **>** Summer 2006: 2.6 σ
- **>** Summer 2007: 2.2 σ
- **>** Summer 2008: 0.7 σ
- SM is tough to beat....
- The 5 σ criterium is there for a reason!
- Will history repeat itself with Lepton Non Universality ? Similar pattern of several « semi-strong » indications apparently all going in the same direction

1)						
		siı	$n(2\beta^{eff})$)≡ 9	sin(2	$\phi_1^{ ext{eff}}$	
b→c	<u></u>	World Av	erade		IR.		PRELIMINARY 0.67 ± 0.02
0 /0		BaBar	- ugo				$0.26 \pm 0.26 \pm 0.03$
	φK	Belle			<u>8</u>	_	0.67 +0.22
	÷	Average					0.44 +0.17
		BaBar					0.57 ± 0.08 ± 0.02
η [´] Κ ⁰		Belle					0.64 ± 0.10 ± 0.04
) È	(0	Average					0.59 ± 0.07
	~~~	BaBar		1			0.59 ± 0.07 0.90 +0.18 +0.03 -0.20 -0.04
	K_s	Belle		-		<u>N</u>	$0.30 \pm 0.32 \pm 0.08$
	-¥°-	Average				2	$0.74 \pm 0.17$
Q,	· · <del>X</del> · · ·	BaBar			-		$0.55 \pm 0.20 \pm 0.03$
π ⁰ K ⁰		Belle				-	0.67 ± 0.31 ± 0.08
β		Average					$0.57 \pm 0.17$
	×°	BaBar			- <del>9-</del> B	- 0.61	$^{+0.22}_{-0.24} \pm 0.09 \pm 0.08$ $^{+0.19}_{-0.25} \pm 0.09 \pm 0.10$
	ь°	Belle				- 0.64	$^{+0.19}_{-0.25} \pm 0.09 \pm 0.10$
	<u>_</u>	Average					0.63 +0.17
ျှ		BaBar				•	$0.55 \substack{+0.26 \\ -0.29} \pm 0.02$
۳ ج		Belle	-	*			$0.11 \pm 0.46 \pm 0.07$
		Average					0.45 ± 0.24
	S	BaBar					0.64 +0.15
	<u> </u>	Belle					0.60 +0.19
- · - · - (A		Average BaBar					0.62 +0.11
π° K		Belle	X X				$\begin{array}{c} 0.72 \pm 0.71 \pm 0.08 \\ 0.43 \pm 0.49 \pm 0.09 \end{array}$
я		Average	L Ž				-0.52 ± 0.41
°⊭.	. <u>v</u>	BaBar					
	°F	Average				2	0.97 ^{+0.03} -0.52 0.97 ^{+0.03} -0.52
	- <del>6</del>	BaBar				<mark>8</mark>	$0.86 \pm 0.08 \pm 0.03$
t t		Belle				0 68	$\pm 0.15 \pm 0.03 \stackrel{+0.21}{_{-0.13}}$
K K K		Average					0.82 ± 0.07
<u>×</u> -							
-2		-	1	0		1	2

21

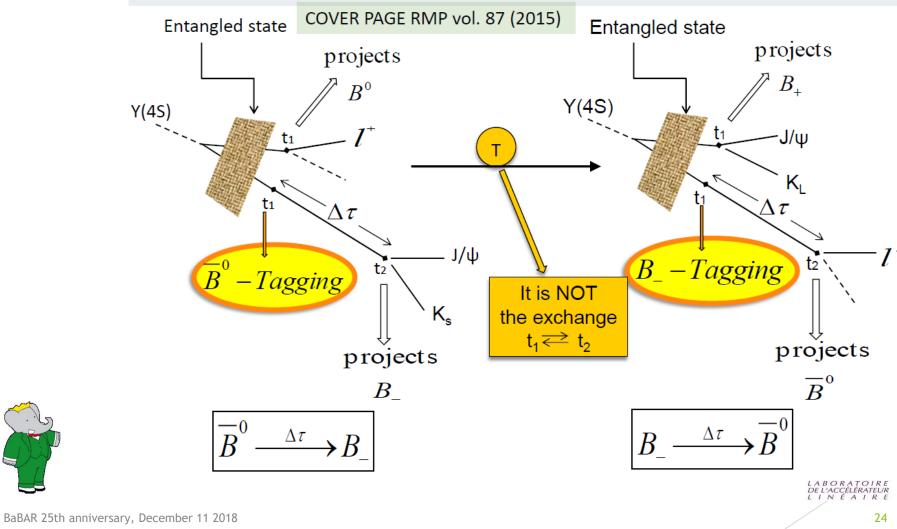

### BABAR performances versus predicted and versus other experiments

- General assumption (called Schneider's theorem in LHCb):
  - Initial predictions always rather optimistic (simplified simulations, no backgrounds, several guestimates, etc)
  - Experimentalists's creativity always allows to overperform
  - As a result the initial predictions are very good!

Also quite true here !!

	Predicted(30 fb ⁻¹ ) (Untagged)	BABAR Achieved (424 fb ⁻¹ )	Ratio per fb ⁻¹	BELLE Achieved(770 fb ⁻¹ )	Ratio per fb ⁻¹
#J/ψK° (π⁺π⁻ )	660	6750	0,96	13040	0,94
Tagging	0,3	0,331	1,1	0,301	1,10
$\Delta$ (sin2 $\beta$ )	0,12	0,036	0,89	0,029	1,09
#J/ψK _L	650	5813	0,84	15937	0,66
$\Delta$ (sin2 $\beta$ )	0,09	0,028	0,85	0,023	1,11

## A very elegant and important measurement performed by BABAR: T violation

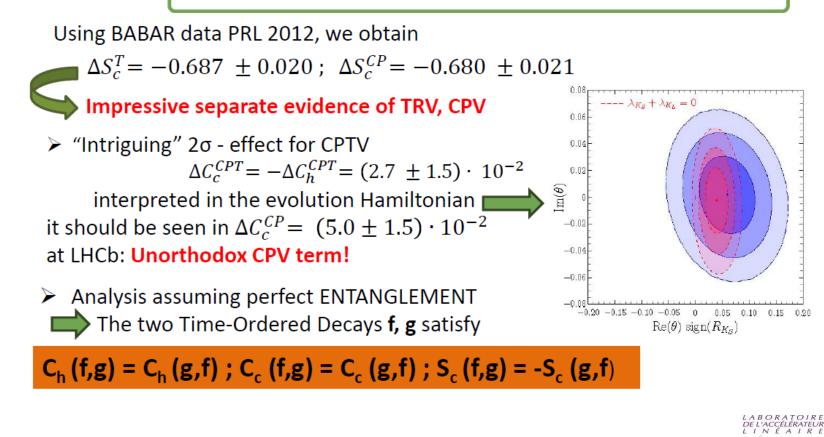



LA BORATOIRE DE L'ACCÉLERATEUR LINÉAIRE

23

#### WHAT IS T-TRANSFORMATION EXPERIMENTALLY?

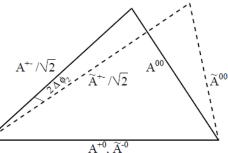
The problem is in the preparation and filtering of the appropriate initial and final meson states for a T-test




#### **GENUINE T, CP, CPT ASYMMETRIES**

J.B., F. Botella, M. Nebot, JHEP 1606 (2016) 100

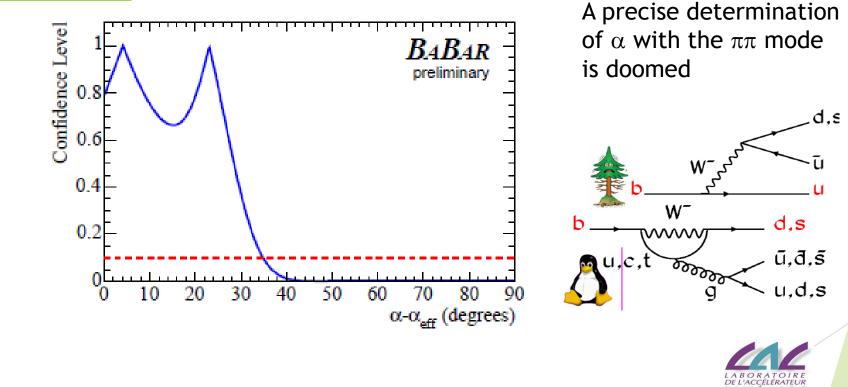
> 3 different Observables  $\Delta C_h$ ,  $\Delta C_c$ ,  $\Delta S_c$  for each symmetry


9 Asymmetry parameters with different information content



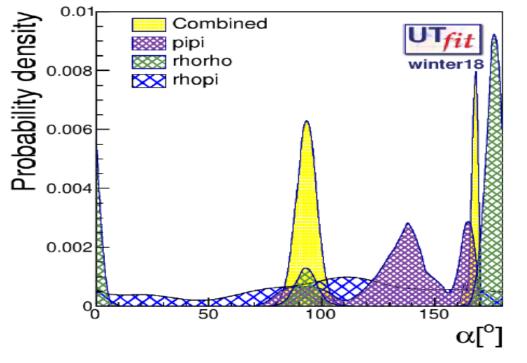
#### $sin2\alpha$ measurements

- This angle is measured by the same method with b->u transitions
- The initial favorite mode B  $\rightarrow \pi\pi$ , supplemented by more complex decays
- $\pi\pi\pi^{\circ}$ , and  $\pi\pi\pi\pi$  decays.
- It was known since the beginning that PENGUIN POLLUTION could make the measured angle differ from true  $\alpha$ .
- Several delicate constructions were proposed to control this pollution based on measurements of the related channels (eg B  $\rightarrow \pi^{\circ} \pi^{\circ}$ )
- The amount of this pollution depends of the modes and of the ratios of branching fractions.
- Babar mesured the channel B-> $\rho\rho$  in 2004, showing that two-body channels was not the best.









## Influence of the value BR(B $\rightarrow \pi^{\circ}\pi^{\circ}$ ) on $\alpha - \alpha_{eff}$

 $\mathcal{B}(B^0 \to \pi^0 \pi^0) = (1.17 \pm 0.32 \pm 0.10) \times 10^{-6}$ ,  $C_{\pi^0 \pi^0} = -0.12 \pm 0.56 \pm 0.06$ , arXiv:hep-ex/0408081



27

#### The $\rho\rho$ channel is the best



p-value

ACCÉLÉRATEUR

28

combined SM:  $(93.3 \pm 5.6)^{\circ}$ UTfit prediction:  $(90.1 \pm 2.2)^{\circ}$ 



## BABAR sin2 $\alpha_{eff}$ performances versus predicted and versus other experiments

	Predicted (30 fb1)(Untagged )	BABAR Achieved (424 fb-1)	Ratio per fb-1	BELLE Achieved(770 fb-1)	Ratio per fb-1
#π ⁺ π ⁻					
	380	1394	0,35	2964	0,86
#Кр	470	5410	1,09	9205	1,07
$\Delta$ (sin2 $\alpha$ )	0,29	0,1	0,77	0,08	1,08





29

#### Observation of direct CPV violation. The $K\pi$ puzzle

- In 2004, direct CPV violation was observed by BABAR. The branching fraction  $BR(B^0 \rightarrow K^-\pi^+)$  is different from  $BR(B^0 \rightarrow K^+\pi^-)$ , and  $BR(B^+ \rightarrow K^+\pi^0)$  is different from  $BR(B^- \rightarrow K^-\pi^0)$ 
  - By far, the simplest way to distinguish matter from antimatter. Very handy before shaking hands with an alien!!!
- But the two asymmetries do not agree with other as they should under usual isopin symmetry

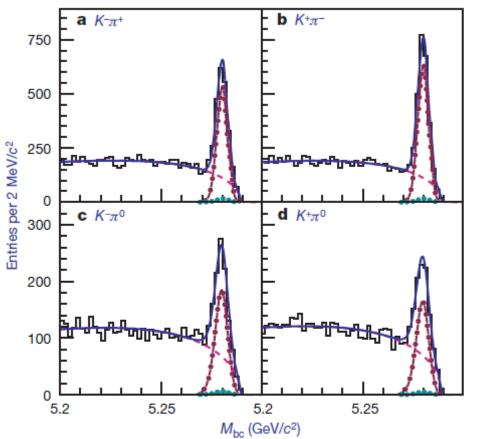
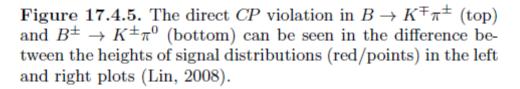

	$B^0 \to K^+ \pi^-$	$B^+ \to K^+ \pi^0$	$B^+ \to K^0 \pi^+$	$B^0 \to K^0 \pi^0$
Belle	$-0.094 \pm 0.018 \pm 0.008$	$+0.07 \pm 0.03 \pm 0.01$	$+0.03 \pm 0.03 \pm 0.01$	$+0.14 \pm 0.13 \pm 0.06$
BABAR	$-0.107 \pm 0.016^{+0.006}_{-0.004}$	$+0.030\pm0.039\pm0.010$	$-0.029 \pm 0.039 \pm 0.010$	$-0.13 \pm 0.13 \pm 0.03$
CDF	$-0.086 \pm 0.023 \pm 0.009$	_	_	—
CLEO	$-0.04 \pm 0.16 \pm 0.02$	$-0.29 \pm 0.23 \pm 0.02$	$+0.18 \pm 0.24 \pm 0.02$	—
Average	$-0.098 \pm 0.012$	$+0.050 \pm 0.025$	$+0.009 \pm 0.025$	$-0.01\pm0.10$

Table 3: Summary of  $\mathcal{A}_{CP}$  measurements by Belle, BABAR, CLEO and CDF.






## Observation of direction CP violation in $K\pi$ decays



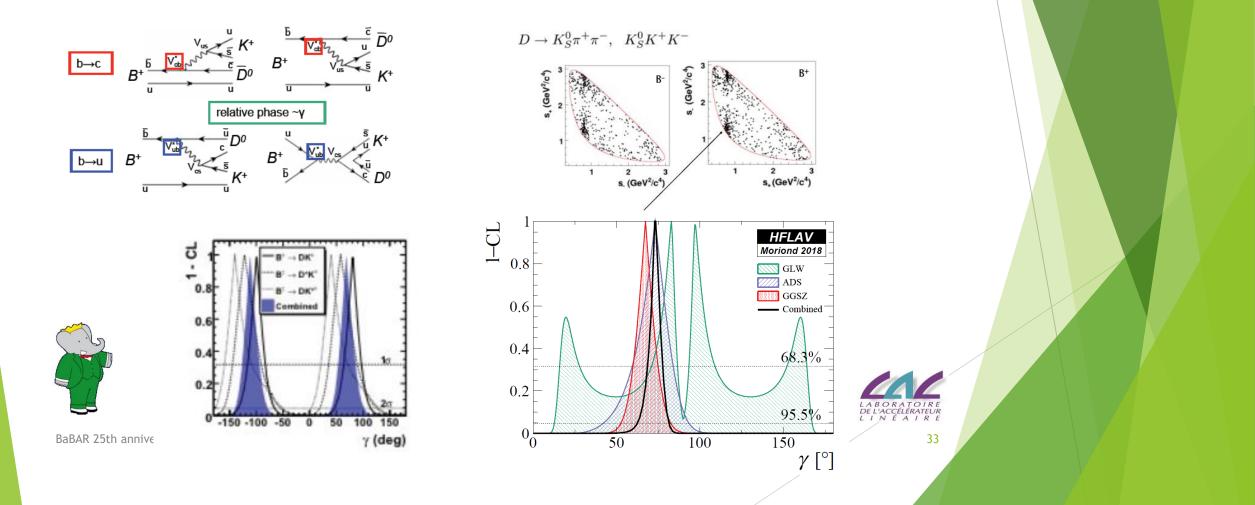
The future lies in the check of well designed sum rules relating all these parameters: Another nice challenge for LHCb and BELLE-II!





BaBAR 25th anniver

31


#### $\gamma$ measurements

- There are several methods used to measure γ and all of them have been successfully pionereed at BABAR such as B->DK, Dalitz analysis of B->D(K0pipi) K
- However it is fair to say that the precisions that was reached by BABAR and BELLE were not sufficient to constraint the unitarity triangle.
- LHCb and BELLE-II will reach the necessary precision to put this constraint into action
- This will be quite interesting since  $\gamma$  is in principle very largely immune to new physics, so comparing between  $\gamma$  and 180°- $\alpha$ - $\beta$  will be quite meaningful





An illustration of BABAR measurements (CKM 2012) and present average (HFAG2018)



#### A recent measurement using BABAR+BELLE regarding CP violation

#### Overview of Combined BABAR+Belle Measurements

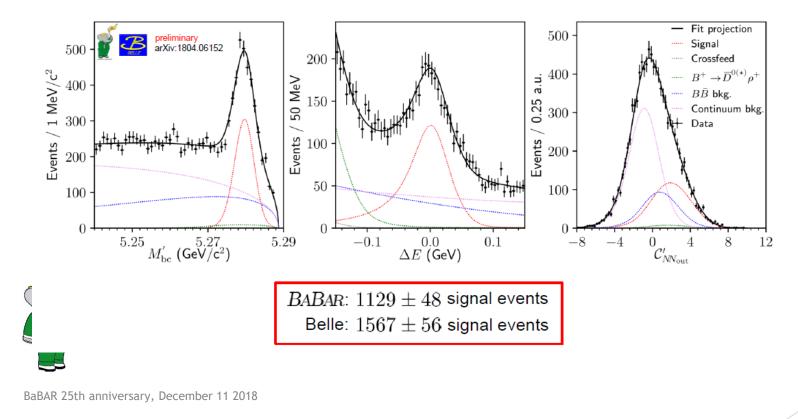
- 1.  $B^0 \rightarrow D_{CP}^{(*)}h^0$  with two-body D meson decays to CP eigenstates:
  - $\circ$  Time-dependent *CP* violation measurement of  $\sin(2\beta)$
  - $\circ$  Theoretically clean mode, could provide new  $\sin(2\beta)$  SM reference

Result: - First observation of *CP* violation in this mode - Published in PRL [PRL 115, 121604 (2015)]

- 2.  $B^0 \to D^{(*)}h^0$  with the three-body D meson  $D \to K_S^0 \pi^+ \pi^-$  decay:
  - $\circ$  Time-dependent Dalitz plot analysis to measure  $\cos(2\beta)$
  - Make full use of the joint approach by applying common assumptions and the same model simultaneously to the *BABAR* and Belle data sets

Result: - Most precise measurement of  $\cos(2\beta)$ 

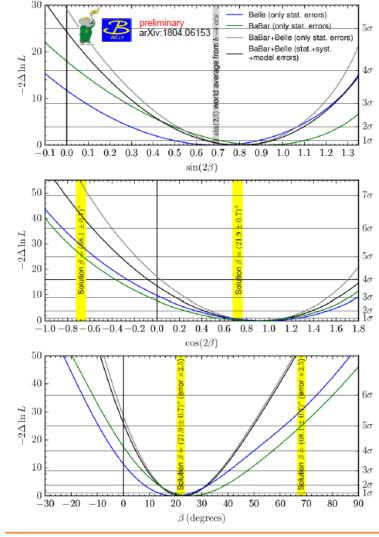
- First evidence for  $\cos(2\beta) > 0$
- Exclusion of multifold solutions of the Unitarity Triangle
- Joint PRL and PRD publications have been submitted [arXiv:1804.06152, arXiv:1804.06153]






#### 2. Combined BABAR+Belle Analysis: cos(2 $\beta$ ) from ${\rm B}^0 ightarrow {\rm D}^{(*)}{\rm h}^0$

• Reconstruct  $B^0 \to D^{(*)}h^0$  with  $h^0$  in  $\pi^0 \to \gamma\gamma$ ,  $\eta \to \gamma\gamma$ ,  $\pi^+\pi^-\pi^0$  and  $\omega \to \pi^+\pi^-\pi^0$  $D \to K^0_S \pi^+\pi^-$  and  $D^{*0} \to D\pi^0$ .


- In total, 5  $B^0$  decay modes are reconstructed.
- $e^+e^- \rightarrow q\bar{q} \ (q \in \{u, d, s, c\})$  continuum background is identified by neural networks.
- Extract signal by 3D fit of beam-constr. mass  $M'_{bc}$ , energy-difference  $\Delta E$  and  $NN'_{out}$ .



ACCÉLÉRATEUR

35

#### 2. Combined BABAR+Belle Analysis: cos(2 $\beta$ ) from $\mathbf{B}^0 \rightarrow \mathbf{D}^{(*)}\mathbf{h}^0$



- Single most precise measurement of  $\cos(2\beta)$
- First evidence for  $\cos(2\beta) > 0$  (3.7 $\sigma$ )
- Direct exclusion of the 2nd solution  $\pi/2 \beta = (68.1 \pm 0.7)^\circ$ 
  - of the CKM Unitarity Triangle (7.3 $\sigma$ )
  - $\rightarrow$  Reduction of the trigonometric ambiguity of the CKM Unitarity Triangle
- Exclusion of  $\beta = 0^{\circ}$  (5.1 $\sigma$ )
  - $\rightarrow$  Observation of CP violation in  $B^0 \rightarrow D^{(*)} h^0$  decays
- Joint PRL (arXiv:1804.06152) and PRD (arXiv:1804.06153) papers have been submitted.

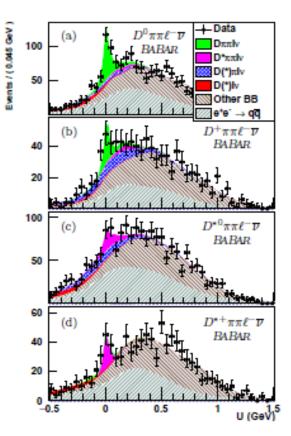
BaBAR 25th anniversary, December 11 2018

A B O R A T O I R E E L'ACCÉLÉRATEUR

## $V_{ub}$ and $V_{cb}$

- These CKM parametrs are measured with b>c and b>u semileptonic decays: Dlv or  $\pi$ lv
- These have large branching fractions and are easy to identify at first sight. However progress has been slow in this area for several reasons:
  - For V_{cb}, hadronic uncertainties and extrapolation uncertainties to the full phase space
  - For  $V_{ub}$ , same plus visibility in a even more limited region of phase space because of  $V_{cb}$  related events.
- Both measurements systematically dominated since 2001
- Difficult to separate BABAR/BELLE/theory progress over the years



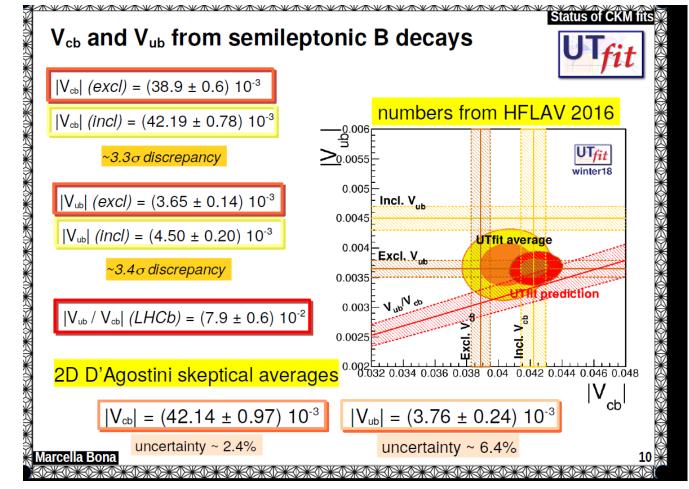



#### Semileptonic decays with extra pions

One BABAR significant contribution was the observation of modes with one or two extra pions <u>Phys.Rev.Lett. 116 041801 (2016)</u>

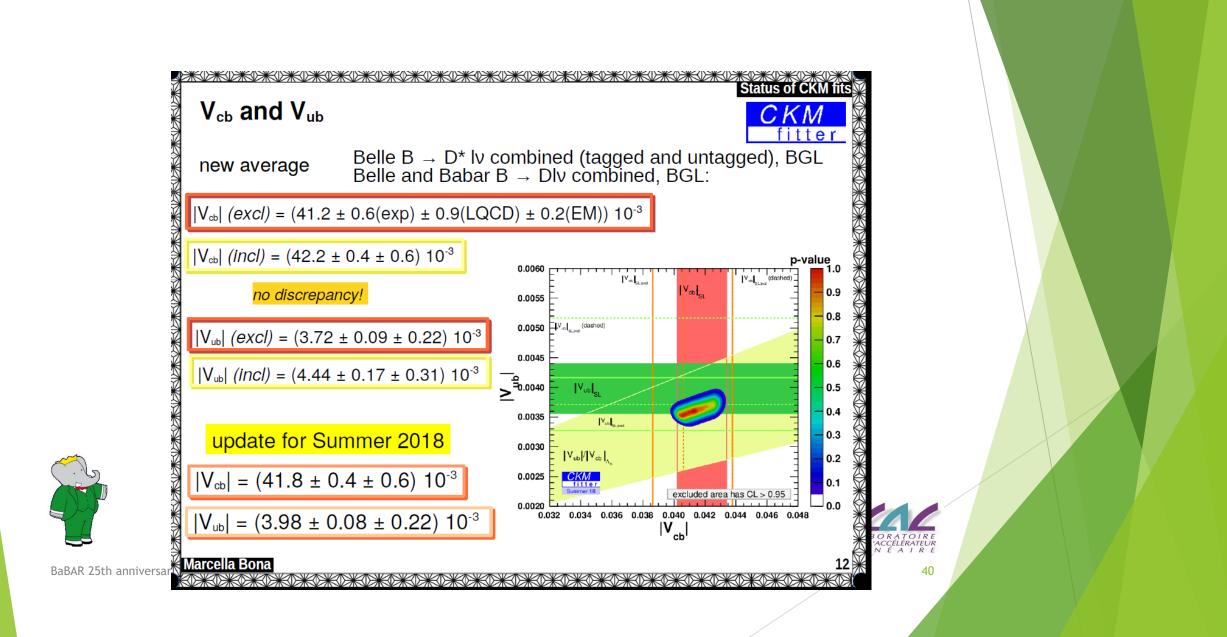
These high multiplicity modes are important to

- Close the gap between inclusive and exclusive BRs
- Quantify the D** feed-down for D*τν measurements

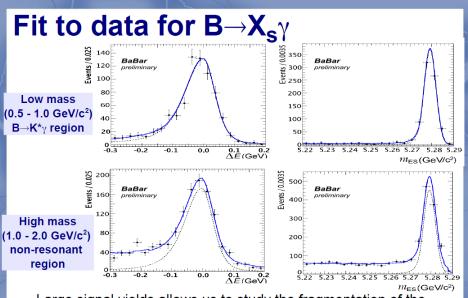




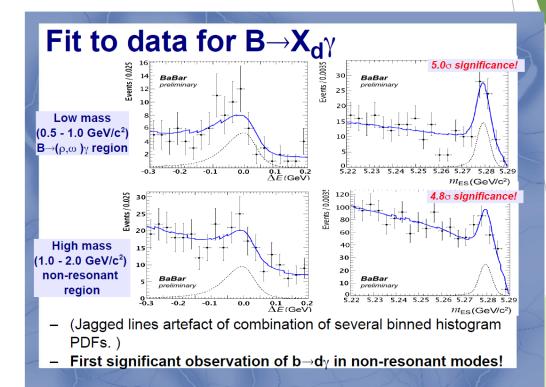

38




#### Vub/Vcb present status



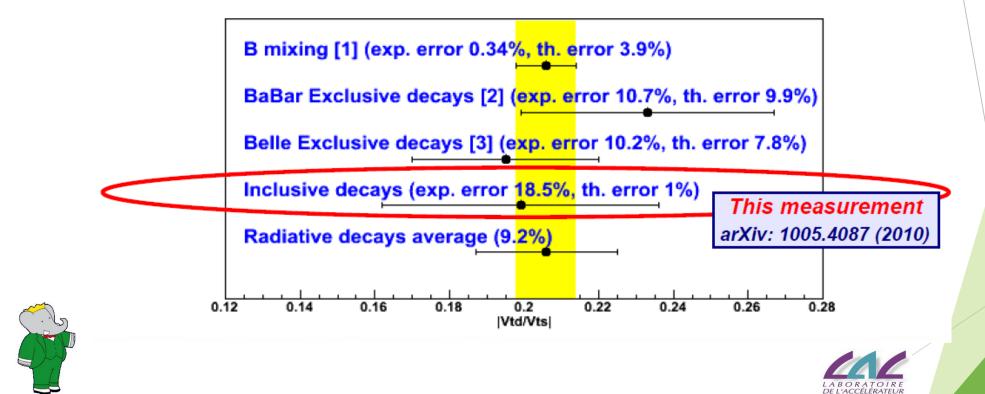




39



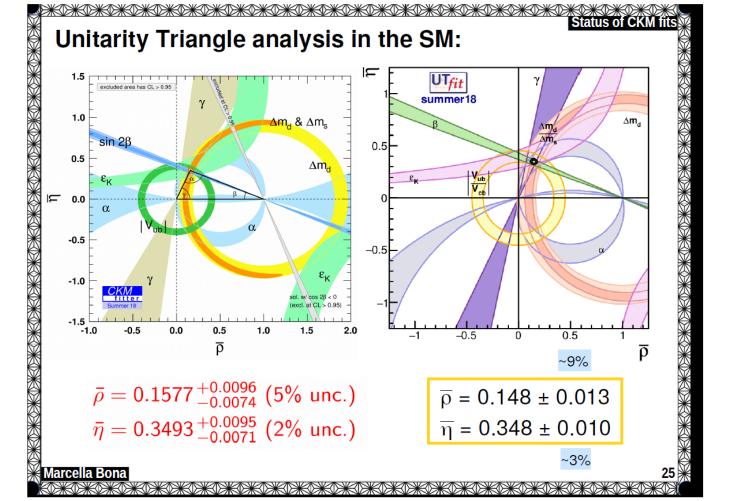
#### V_{td}/V_{ts} measurement by BABAR

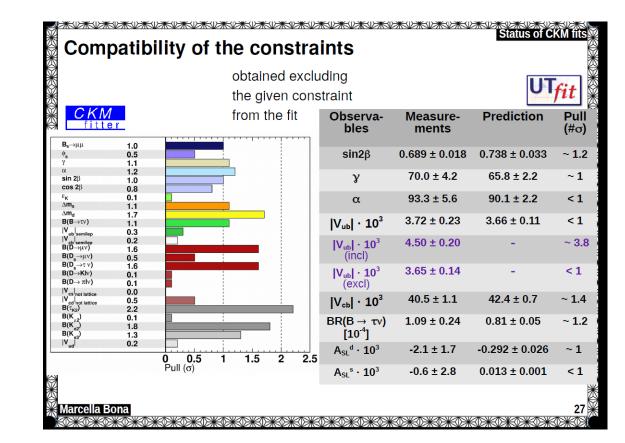



 Large signal yields allows us to study the fragmentation of the non-resonant b→sγ decays, and adjust our simulation accordingly.







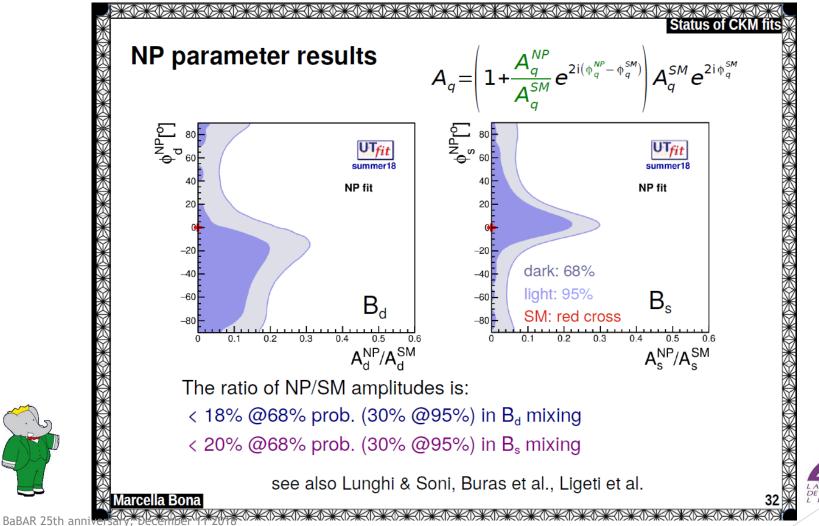


# Good agreement with Bs mixing errors still larger, a good challenge for BELLE-II



42

#### CKM triangle in 2018 and beyond








LA BORATOIRE DE L'ACCÉLERATEUR L I N É A I R É

44

### Still room for new physics !!!





45

### World famous BABAR tools

- Cornelius (tagging package)
- sPlot (optimum background subtraction)
- RooFit (very advanced fiiting package)
- EvtGEN (all knowledge about B decays in an event Generator)
- CKMfitter/ UTfit Frequentist and bayesan overall CKM fitters
- First world-wide Grid ever deployed) (albeit not yet automated)
- Blind analysis





#### Conclusions

- BABAR achievements in CKM physics were just fantastic !
- They were due to
  - ▶ the complete dedication of the PEP-II and BABAR collaborations
  - the great level of creativity of these teams
  - the strong competition with our BELLE colleagues
  - The intimate relationship with many theorists
  - The good coordination and strong support of funding agencies and of our labs
  - The extraordinary world-wide efforts of our computing centers



And the extremely friendly atmosphere of the BABAR collaboration!



#### Talk outline

- Disclaimer
- CKM panorama before BABAR, ie ICHEP 1998

https://arxiv.org/abs/hep-ex/9903063

- CKM tools invented by BABAR: the tagging group, sweights
- Physics of teh B factories <u>https://arxiv.org/ftp/arxiv/papers/1406/1406.6311.pdf</u>
- S plots 440 citations https://arxiv.org/abs/physics/0402083
- BABAR results regarding CKM
  - Sin2 beta

https://arxiv.org/abs/0705.2998 2007

Sin 2 alpha

https://arxiv.org/abs/0906.2082 2009

Angle gamma

https://arxiv.org/abs/1301.3283 2013

Vcb

http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-11606.pdf 2006

http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-11606.pdf 2010

Vub

https://arxiv.org/abs/1611.05624



https://www.sciencedirect.com/science/article/abs/pii/S037594740900370

BaBAR 25th anniversary, December 11 2018

- Direct CP violaton in Kp modes
- BABAR/BELLE comparison



48