

Topical Workshop on "Scintillation Screens and Optical Technology for Transverse Profile Measurements" Krakow, Poland - April 1 to 3, 2019

Characterization of the spatial frequency response of a scintillator for beam size measurements using Heterodyne Near Field Speckles

<u>M. Siano</u>, B. Paroli, M. A. C. Potenza (Universita' degli Studi di Milano)
U. Iriso, C. S. Kamma-Lorger, A. A. Nosych (ALBA-CELLS Synchrotron, Cerdanyola del Valles)
S. Mazzoni, F. Roncarolo, G. Trad (CERN, Geneva)

The role of the scintillator

Recent results at ALBA

Conclusions and perspectives

General framework

Interferometric beam size measurements

Complex Coherence Factor (CCF): $\mu(\Delta \vec{r}) = \frac{\langle E(\vec{r}) E^*(\vec{r} + \Delta \vec{r}) \rangle}{\sqrt{\langle I(\vec{r}) \rangle \langle I(\vec{r} + \Delta \vec{r}) \rangle}}$

Free-space propagation, Van Cittert – Zernike theorem:

<u>FT</u> radiation source intensity CCF

General framework

Interferometric beam size measurements

The role of the scintillator

Recent results at ALBA

Conclusions and perspectives

Colloids

Colloids: a <u>cloud</u> of spherical particles suspended in water, <u>randomly moving and wiggling</u>, generating a <u>stochastic, noisy-like</u> intensity distribution known as speckles.

The role of the scintillator

Recent results at ALBA

Conclusions and perspectives

The role of the scintillator

Recent results at ALBA

Conclusions and perspectives

Single-particle scattering

Scattering from a single particle: paradigmatic layout to probe coherence between a selected point (the position of the particle) and **all** the others

The role of the scintillator

Recent results at ALBA

Conclusions and perspectives

 $E_s(\vec{r},z) \propto \sum_{i=1}^N E_{s,i}(\vec{r},z)$

 $\Re\left\{\left\langle E_{0}E_{s}^{*}\right\rangle\right\} = \sum_{i=1}^{N} \Re\left\{\left\langle E_{0}E_{s,i}^{*}\right\rangle\right\}$

Heterodyne speckles: intensity sum of many equal single-particle interference images

The role of the scintillator

Recent results at

ALBA

Conclusions and

perspectives

The power spectrum

Talbot Transfer Function (TTF)

Spatial power spectrum of heterodyne speckles **directly** provides the interferometric information on **2D transverse coherence**

The spatial master curve

M. Siano

The role of the scintillator

HNFS @ NCD-SWEET (ALBA)

The Heterodyne $I(\vec{q},z) = T(q,z)C(\vec{q},z)H_0(\vec{q})S(q) + P(q)$ Near Field Speckle (HNFS) technique $H(\vec{q})$ The role of the scintillator \mathbf{T} = Talbot Transfer Function (TTF) Recent results at **C** = squared modulus of CCF ALBA H_{o} = frequency response (scintillator, optics, CCD, ...) **S** = particle form factor Conclusions and \mathbf{P} = noise contribution perspectives **H** = Instrumental Transfer Function (ITF)

sample can be expressed as:

General formulation of HNFS

M. Siano

The **two-dimensional power spectrum** of speckled

intensity distribution measured at a distance z from the

Measuring the ITF

57 mm

450 mm

The Heterodyne Near Field Speckle (HNFS) technique

The role of the scintillator

Recent results at ALBA

Conclusions and perspectives

<u>Short distances</u> → isotropy → <u>ITF</u> <u>Large distances</u> → anisotropy → <u>2D CCF</u>

Recent results at ALBA

The role of the scintillator

Recent results at ALBA

Conclusions and perspectives

The role of the scintillator

Recent results at ALBA

Conclusions and perspectives

Signal overview

The role of the scintillator

Recent results at ALBA

Conclusions and perspectives

Reducing Talbot oscillations

The role of the scintillator

Recent results at ALBA

Conclusions and perspectives

Coherence and beam size

ARIES-ADA Topical Workshop – Krakow, Poland – April 1 to 3, 2019

ITF: measurements

The Heterodyne Near Field Speckle (HNFS) technique

The role of the scintillator

Recent results at ALBA

Conclusions and perspectives

ARIES-ADA Topical Workshop – Krakow, Poland – April 1 to 3, 2019

Possible contributions:

1) particle form factor⁽ⁱ⁾

Figure 5.5: Silica particle form factor, Bonse-Hart measure

(i) M. Manfredda, PhD thesis

Possible contributions:

particle form factor⁽ⁱ⁾
 sample dynamics^(ii,iii,iv)

(i) M. Manfredda, PhD thesis
(ii) M. D. Alaimo et al, Phys. Rev. Lett. (2009)
(iii) R. Cerbino et al, Nat. Phys. (2008)
(iv) Y. Kashyap et al, Phys. Rev. A (2015)

Possible contributions:

1) particle form factor⁽ⁱ⁾

2) sample dynamics^(ii,iii,iv)

3) microscope

4) <u>scintillator</u>^(ii,iii,iv)

(i) M. Manfredda, PhD thesis
(ii) M. D. Alaimo et al, Phys. Rev. Lett. (2009)
(iii) R. Cerbino et al, Nat. Phys. (2008)
(iv) Y. Kashyap et al, Phys. Rev. A (2015)

Conclusions and perspectives

The role of the scintillator

Recent results at ALBA

Conclusions and perspectives

Conclusions & perspectives

Possibility of beam size measurements with HNFS: simple, inexpensive, robust, 2D information

S/N optimization (CCD, sample, **scintillator**, ...)

Essential to precisely know the ITF

■ Measurable with the same technique (no third-party instrumentation), mainly dictated by scintillator → higher resolution to probe finer fringes

More accurate measurements, comparison with simulations (Fluka, Geant4, ...)

"Wo wiel Licht, ist starker Schatten"

Goethe

"Shades are deeper where the light is stronger. Often, yet, they're part of the same knowledge. Shades and darkness are not the same, for the first is cast by something, but the latter is not. Any time that a strong shadow appears, there is a chance for the knowledge to advance. Not necessarily by killing the shadow, turning it into light, but simply by asking where the shadow arises from.

Which may even be from the superposition of two or many lights."

M. Manfredda

Backup slides

ARIES-ADA Topical Workshop – Krakow, Poland – April 1 to 3, 2019

Near Field

technique

scintillator

ALBA

ITF at ESRF

R. Cerbino et al, Nat. Phys. (2008)

Supplementary Figure 2 Determination of the detector transfer function. The open blue squares represent the power spectrum measured with the calibrating sample at z=0.01 m. The red open circles are the data after correction with the Talbot transfer function. The black dashed line is an exponential fit to the corrected data with a characteristic wavevector $q_{det} = 1/1610 \ nm^{-1}$ which corresponds to a characteristic lengthscale $L_{det} \simeq 10 \mu m$ (i.e. about 15 pixels) associated to the detector.

ARIES-ADA Topical Workshop – Krakow, Poland – April 1 to 3, 2019

Coherence at ESRF

M. D. Alaimo et al, Phys. Rev. Lett. (2009)

Walk-off effect

M. Siano