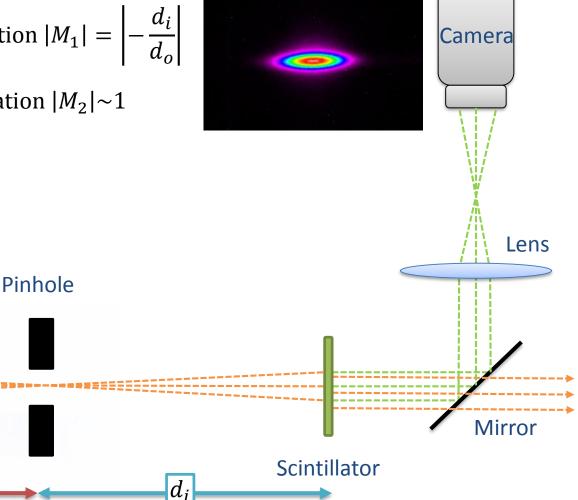


Performance of a Reflective Microscope Objective and Thin Scintillator in an X-ray Pinhole Camera

X-ray Pinhole Camera

Transverse profile of the electron beam is measured using an X-ray Pinhole Camera


Source–to–scintillator magnification $|M_1| = \left| -\frac{d_i}{d_o} \right|$

Scintillator–to–camera magnification $|M_2| \sim 1$

X-rays

Visible light

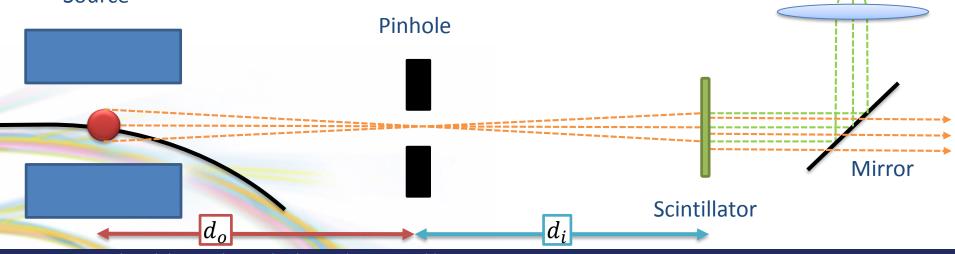
ARIES-ADA Topical Workshop, Krakow, Poland, 2 April 2019: L. Bobb

 d_o

Point Spread Function

Measured beam size is a convolution of the true beam size and the PSF (Gaussian approx.):

$$\sigma^2_{Measured} = \sigma^2_{True} + \sigma^2_{PSF}$$


where

$$\sigma_{PSF}^2 = \sigma_{Pinhole}^2 + \sigma_{Camera}^2 > 0$$

$$\begin{aligned} \sigma_{Pinhole}^2 &= \sigma_{Diffraction}^2 + \sigma_{Aperture}^2 \\ \sigma_{Camera}^2 &= \sigma_{Screen}^2 + \sigma_{Lens}^2 + \sigma_{Sensor}^2 \end{aligned}$$

P. Elleaume et al., J. Synchrotron Radiat. 2, 209 (1995).C. Thomas et al., Phys. Rev. ST Accel. Beams 13, 022805, (2010).

Source

ARIES-ADA Topical Workshop, Krakow, Poland, 2 April 2019: L. Bobb

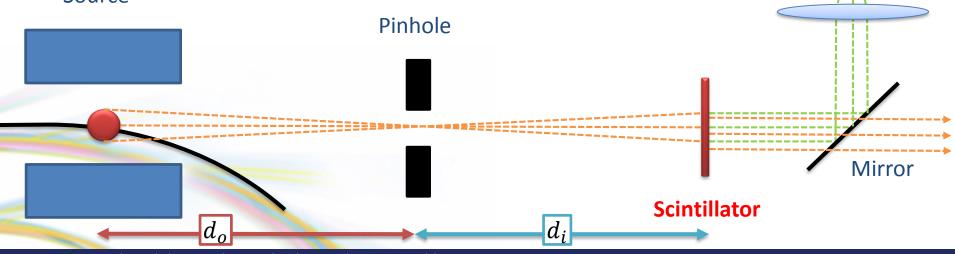
Lens

Camera

Point Spread Function

Measured beam size is a convolution of the true beam size and the PSF (Gaussian approx.):

$$\sigma^2_{Measured} = \sigma^2_{True} + \sigma^2_{PSF}$$


where

$$\sigma_{PSF}^2 = \sigma_{Pinhole}^2 + \sigma_{Camera}^2 > 0$$

$$\sigma_{Pinhole}^{2} = \sigma_{Diffraction}^{2} + \sigma_{Aperture}^{2} \\ \sigma_{Camera}^{2} = \sigma_{Screen}^{2} + \sigma_{Lens}^{2} + \sigma_{Sensor}^{2}$$

P. Elleaume et al., J. Synchrotron Radiat. 2, 209 (1995).C. Thomas et al., Phys. Rev. ST Accel. Beams 13, 022805, (2010).

Source

ARIES-ADA Topical Workshop, Krakow, Poland, 2 April 2019: L. Bobb

Lens

Camera

diamond Reducing Scintillator Contribution to PSF

Spatial resolution is improved by reducing the scintillator thickness.

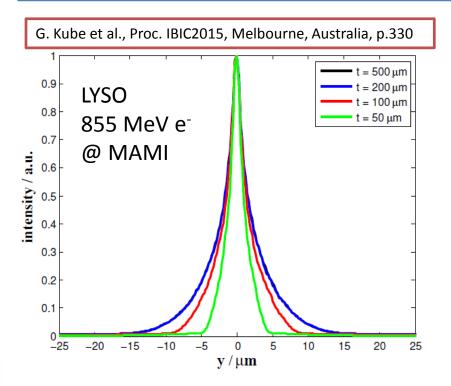


Figure 8: Simulated SPFs for different scintillator thicknesses. The simulations were performed for NA = 0.20 and $\lambda = 420$ nm.

SPF = Single Particle Resolution Function

 $Contrast = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$

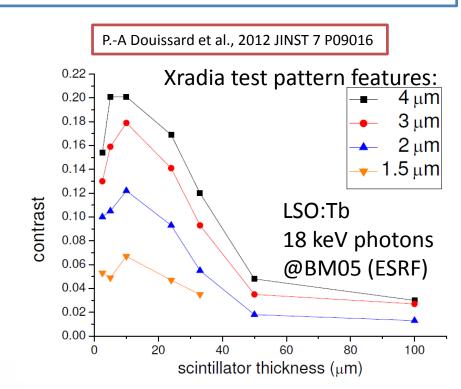


Figure 6. Influence of the thickness of the single crystal scintillator film on the contrast achievable in the image with a $10 \times (NA = 0.4)$ microscope objective (18 keV photon energy, different graphs represent results obtained by using differently sized features in the Xradia test pattern).

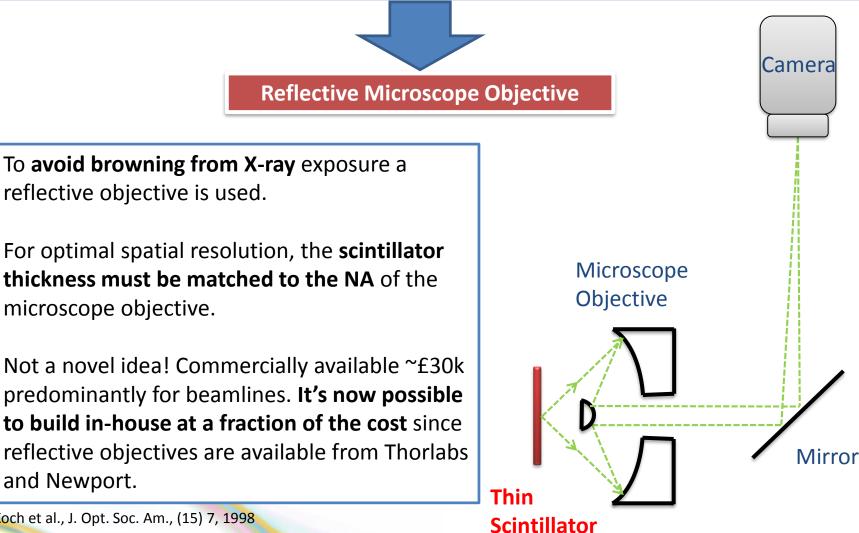
Spatial resolution is improved by reducing the scintillator thickness. However, a thin scintillator will emit fewer photons.

 $I = I_o e^{-t/\mu}$

 I_o = incoming intensity, I=outgoing intensity, μ = attenuation length, t=thickness M. Ishii and M. Kobayashi, Prog. Crystal Growth and Charact. 1991, 23, 245-311

Table 1

M. Rutherford et al., J. Synchrotron Rad. (2016). 23, 685-693


Scintillator materials for hard X-ray detection on the sub-µs timescale.

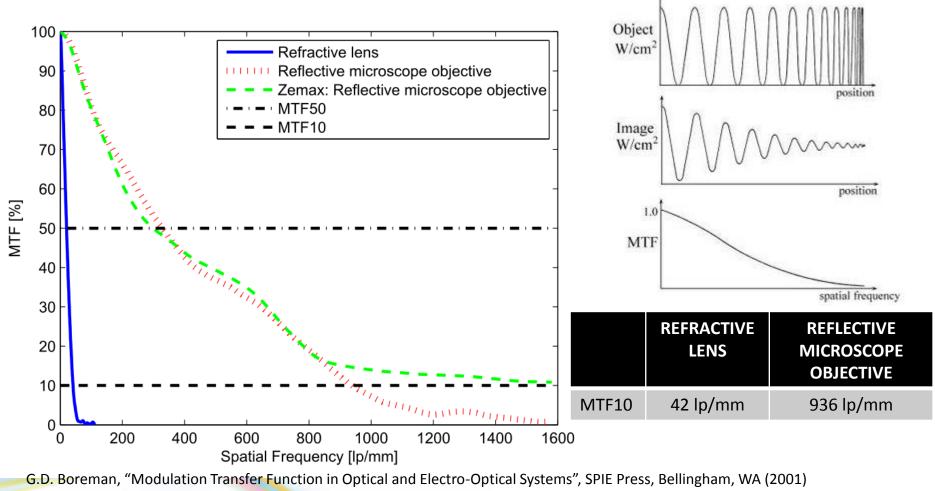
Crystal	Density (g cm ⁻³)	Emission maximum (nm)	Attenuation length (25 keV, 50 keV) (μm)	Light yield (photons MeV^{-1})	Dominant decay time (ns)
Cs ₂ NaYBr ₃ I ₃ :Ce	4.0	425	125, 252	43000	43
Cs ₂ NaLaBr ₃ I ₃ :Ce	4.0	438	138, 229	58000	68
Cs ₂ LiLaBrCl:Ce	4.1	419	143, 215	50000	55
K ₂ LaI ₅ :Ce	4.4	450	166. 195	52000	24
YAG:Ce†	4.6	550	122, 791	24000	96
YI ₃ :Ce	4.6	532	117, 176	99000	34
Gd ₃ Al ₂ Ga ₃ O ₁₂ :Ce	4.7	550	124, 869	55000	60
RdGd ₂ Br ₇ :5%Ce	4.7	430	77, 508	42000	45
GdI ₃ :5%Ce	5.2	552	114, 195	83000	33
LuI2:Ce	5.6	540	91. 176	115000	33
Lu ₃ Al ₅ O ₁₂ :Ce†	6.7	525	66, 405	27000	61
(LuY)Si ₂ O ₅ :Ce†	7.1	420	75, 461	34000	41
SrHfO ₃ :Ce	7.6	410	45, 284	40000	42
BaHfO ₃ :Ce	8.5	400	52, 148	40000	25

Microscope Objective

Therefore, the optical system must have a large numerical aperture (NA) to capture as many photons as possible from the thin scintillator.

A. Koch et al., J. Opt. Soc. Am., (15) 7, 1998

and Newport.



Lens Comparison in Lab

Refractive		REFRACTIVE LENS	REFLECTIVE MICROSCOPE OBJECTIVE	Reflective	
For thick (200µm) scintillator	F-number	2.8 to 8	1.25*	For thin (<50µm) scintillator	
	Numerical Aperture	0.18 to 0.06*	0.4		
Camera	Focal length	50.2 mm	160 mm (back) 13 mm (effective)	Camera	
	Working distance	-	24 mm		
	Magnification	1	15		
W W	Transmission	400-700 nm	200-1000 nm		
	ns	Microscope Objective			
Mirro	r	D Mirro			
Test Target			Test Target		
ARIES-ADA Tonical Workshon, Krakow, Poland, 2 April 2019: L. Bobb					

diamond Modulation Transfer Function

The MTF (or spatial frequency response) is the magnitude response of the optical system to sinusoids of different spatial frequencies.

www.thorlabs.com

diamond Comparison of Thick vs Thin Scintillator + Optics

diamond PSF Measurement using Touschek Lifetime

In the **Touschek dominated regime** (400 bunch, 200 mA) the measured **beam lifetime** (or condition) τ is used as a proxy measurement for the true beam size σ_y as:

$$\sigma_y = k\tau \tag{1}$$

where k is a scaling factor.

Subtraction in quadrature given a Gaussian beam profile and PSF σ_{PSF} gives the measured beam size σ_M as:

$$\sigma_M = \sqrt{\sigma_y^2 + \sigma_{PSF}^2} \tag{2}$$

Substituting Eq. (1) into (2):

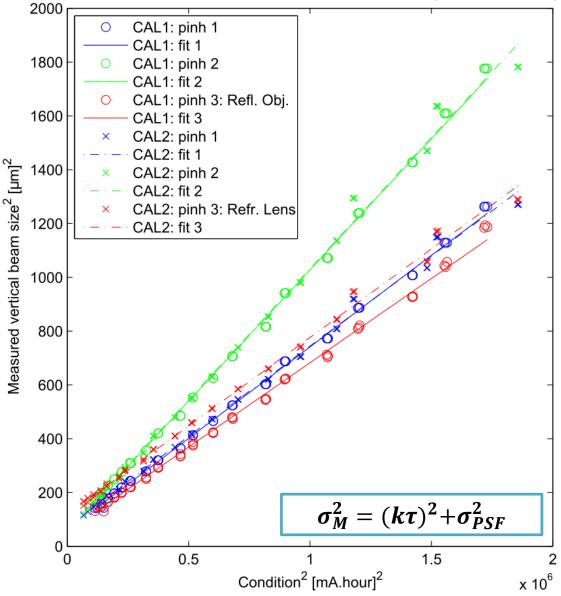
$$\sigma_M = \sqrt{(k\tau)^2 + \sigma_{PSF}^2} \tag{3}$$

A. Piwinski, "The Touschek effect in strong focusing storage rings", DESY 98-179, 1998 L.M. Bobb et al., Proc. of IBIC2016, Barcelona, Spain, WEPG63.

Experiment

The refractive and reflective microscope imagers were installed on X-ray pinhole camera 3 in the storage ring tunnel to ensure all other PSF contributions are identical.

X-ray Pinhole Camera	Scintillator	Source-to- scintillator magnification	Scintillator-to- camera magnification	Optical setup	
1	200 µm Prelude 420:	2.39	1	Refractive lens	
2	LYSO:Ce	2.65	1		
3	200 μm LuAg:Ce	2 47	1		
	25 μm LuAg:Ce	2.47	11	Microscope	


Since the two setups on pinhole 3 could not be calibrated simultaneously, X-ray pinhole cameras 1 and 2 were used to verify that the beam conditions did not change between the consecutive PSF measurements using the Touschek lifetime.

L. Bobb and G. Rehm, Proc. of IBIC2018, Shanghai, China, WEPB18.

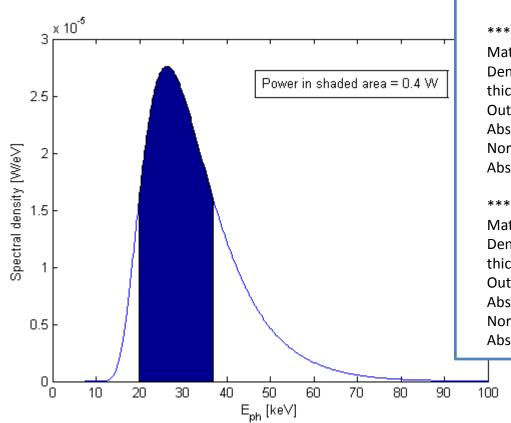
PSF results (1)

L. Bobb and G. Rehm, Proc. of IBIC2018, Shanghai, China, WEPB18.

PSF results (2)

PINHOLE CAMERA	CALIBRATION 1		CALIBRATION 2		
	$m{k}$ [μ m mA $^{-1}$ h $^{-1}$]	σ _{PSF} [μm]	k [μ m mA ⁻¹ h ⁻¹]	σ _{PSF} [μm]	
1	0.026	7.8	0.026	8.6	
2	0.031	7.2	0.031	7.5	
	Reflective microscont thin 25µm s		Refractive lens imager with thick 200µm scintillator		
3	0.025	7.4	0.026	10.9	
		1		1	
		Using a thin scintillator resulted in a 30% improvement to total PSF			

L. Bobb and G. Rehm, Proc. of IBIC2018, Shanghai, China, WEPB18.

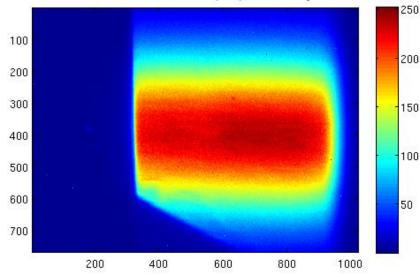

Other Experiences at Diamond

L. Bobb

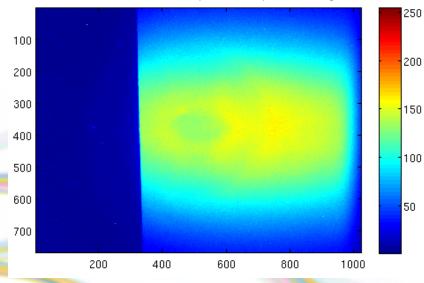
SR from Dipole

Useful energy range once the attenuation in air is also included = 20 to 37 keV Power in this range = 0.4 W

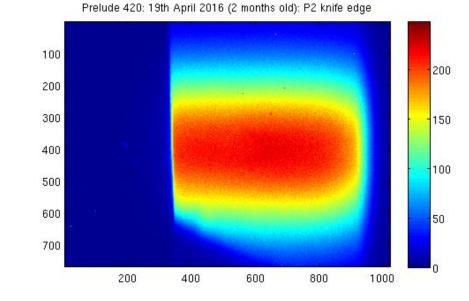
Calculations using DABAX files: CrossSec_XCOM.dat and f1f2_Windt.dat

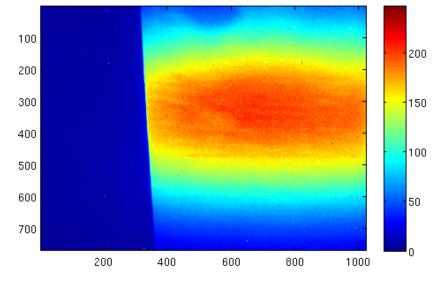

Source energy (start,end,points): 100.000, 100000., 1000 Number of optical elements: 2 Incoming power [source integral]: 11.9806 Normalized Incoming power: 1.00000

```
***** oe 1 [Filter] **********
Material: Al
Density [g/cm^3]: 2.7000000
thickness [mm] : 1.00000
Outcoming power: 1.58626
Absorbed power: 10.3944
Normalized Outcoming power: 0.132402
Absorbed dose Gy.(mm^2 beam cross section)/s: 3849763.5
```


```
***** oe 2 [Filter] **********
Material: air
Density [g/cm^3]: 0.0012047000
thickness [mm] : 16420.0
Outcoming power: 0.601784
Absorbed power: 0.984480
Normalized Outcoming power: 0.0502298
Absorbed dose Gy.(mm^2 beam cross section)/s: 49768.520
```

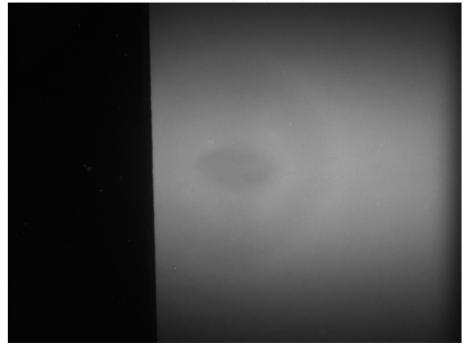
diamond Degradation of Prelude 420

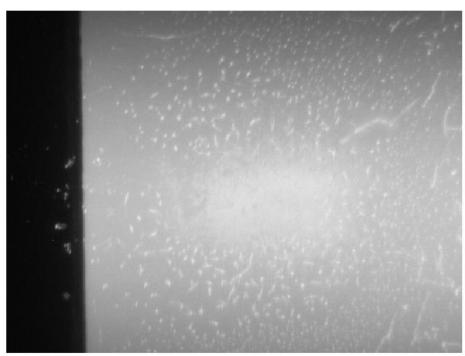

Prelude 420: 17th Feb 2016 (New): P2 knife edge


Prelude 420: 18th Nov 2016 (9 months old): P2 knife edge

ARIES-ADA Topical Workshop, Krakow, Poland, 2 April 2019: L. Bobb

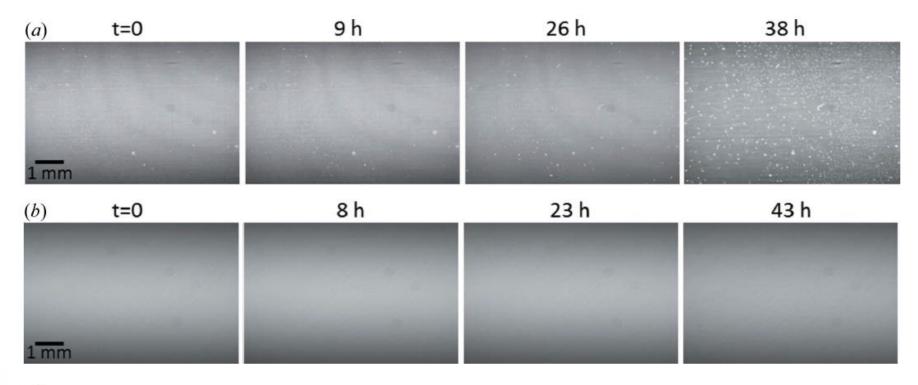
Prelude 420: 23th Nov 2016 (9 months old): New screen position: P2 knife edge


17


Radiation Damage

$200 \ \mu m$ Prelude 420

Prelude 420: 18th Nov 2016 (9 months old): P2 knife edge


200 µm LuAg:Ce

LuAg:Ce Degradation

Figure 3

Flat-field image taken after scintillator is exposed with a pink beam (a) without and (b) with nitrogen gas flow.

T. Zhou et al. J. Synchrotron Rad. (2018). 25, 801-807

Conclusion

- Reducing the scintillator thickness improves spatial resolution.
- For optimal resolution, the numerical aperture of the lens must be matched to the scintillator thickness.
- Here the PSF reduction using a thin scintillator and microscope is compared to the nominal refractive imager setup.
- For those at X-ray light sources, there are numerous publications in the beamline community, including the development of new scintillator materials.
- Scintillator degradation seems to occur differently for different scintillator materials. For LuAg:Ce, it has been found that using nitrogen can reduce the rate of degradation.

Thank you for your attention!

