Latest results on jet measurements with the ATLAS detector

Laura Havener, Columbia University WWND 2019, Beaver Creek, Colorado Monday, January 7th, 2019

Jets in HI collisions?

- Jets in pp collisions
 Jets in Pb+Pb collisions
- Jet quenching: phenomena where partons are expected to lose energy in interactions with the hot dense medium produced in HI collisions
 - jets are sensitive to the microscopic structure of the medium and are a useful probe of the medium

- Measuring jet quenching includes:
 - Inclusive energy loss through the suppression of hard scattering rates of single jets

- Measuring jet quenching includes:
 - Inclusive energy loss through the suppression of hard scattering rates of single jets
 - Differential energy loss through jet correlations to study the path length dependence of energy loss

		5
	10	

- Measuring jet quenching includes:
 - Inclusive energy loss through the suppression of hard scattering rates of single jets
 - Differential energy loss through jet correlations to study the path length dependence of energy loss

Jet structure modification by measuring charged particles in jets and jet mass since jets have a complicated internal structure that is modified in the medium

Jets in HI collisions

- New results from ATLAS at 5.02 TeV are improvements over previous measurements:
 - More precise measurements with better control over the background subtraction and systematics
 - Unfolding for detector effects allow direct comparisons to theoretical models of jet quenching
 - Better statistics allow for differential studies of jet kinematics that look at flavor and path dependence of energy loss, what happens at high p_T, etc.
 - boson+jet systems probe the flavor dependence and absolute energy loss
 - Xe+Xe collisions look at density and path dependence of energy loss

- Measuring jet quenching includes:
 - Inclusive energy loss through the suppression of hard scattering rates of single jets
 - Differential energy loss through jet correlations to study the path length dependence of energy loss

Jet structure modification by measuring charged particles in jets jets have a complicated internal structure that is modified in the medium

Jet suppression

- Jet quenching in Pb+Pb are implies suppression of jet yields at a fixed p_T compared to pp collisions.
 - Compare number of jets in Pb+Pb to pp using the RAA

Jet suppression

- Jet quenching in Pb+Pb are implies suppression of jet yields at a fixed p_T compared to pp collisions.
 - Compare number of jets in Pb+Pb to pp using the R_{AA}

Jet yield in heavy ion collisions Jet crosssection in *pp* collisions

 Jets measured in six bins of rapidity (out to 2.8) and up to ~ 1 TeV in jet p_T.

Jet spectra in Pb+Pb and pp are unfolded using p_T[GeV]
 1D Bayesian unfolding.

 R_{AA} is < 1 for α^{\gtrless} anti- $k_r R = 0.4$ jets, $\sqrt{s_{NN}} = 5.02$ TeV ATLAS all centralities + **+ +** 0.5 |y| < 2.810% 30% 2015 data: Pb+Pb 0.49 nb⁻¹, pp 25 pb⁻¹ 50% $\langle T_{AA} \rangle$ and luminosity uncer. 60 - 70% 100 300 40 60 200 500 900 $p_{_{T}}$ [GeV]

• R_{AA} is < 1 for α^{\gtrless} all centralities

*R*_{AA} is lower in central (~0.5) than peripheral (~0.9)

- *R*_{AA} is < 1 for [₹] all centralities
- *R*_{AA} is lower in central (~0.5) than peripheral (~0.9)

*R*_{AA} shows suppression up to a TeV!

• R_{AA} show slight p_T dependence where it increases and then begins to flatten at high p_T

- *R*_{AA} is < 1 for all centralities
- *R*_{AA} is lower in central (~0.5) than peripheral (~0.9)
- *R*_{AA} shows suppression up to a TeV!

- R_{AA} is independent of $\sqrt{s_{NN}}$ (over a narrow range) when comparing 2.76 and 5.02 TeV results
- Significant reduction in systematic uncertainties

RAA: pt dependence

• R_{AA} is < 1 for α^{\triangleleft} all centralities

*R*_{AA} is lower in central (~0.5) than peripheral (~0.9)

*R*_{AA} shows suppression up to a TeV!

Comparison to theory: LBT describes it well at higher
 p_T and SCETg describes it better at lower p_T

arXiv:1805.05635

RAA: rapidity dependence

Spectra is steeper with increasing rapidity at fixed p_T for the same amount of energy loss and since $R_{AA} \sim red/blue$.

Iower RAA

mid-rapidity foward

Competing effects: which one wins or do they cancel?

R_{AA}: rapidity dependence

Spectra is steeper with increasing rapidity at fixed pt for the same amount of energy loss and since R_{AA} ~ red/blue.

mid-rapidity Iower RAA

foward-rapidity

Quark and gluon fraction changes with rapidity and p_{T} with more quarks at forward rapidity which should be quenched less.

higher RAA

R_{AA}: rapidity dependence

- Ratio of the R_{AA} vs. y to the R_{AA} for lyl < 0.3 in different p_T ranges
 - Large cancelation of systematics in ratio

R_{AA}: rapidity dependence

- Ratio of the R_{AA} vs. y to the R_{AA} for lyl < 0.3 in different p_T ranges
 - Large cancelation of systematics in ratio
- *R*_{AA} is flat with rapidity at low *p*_T

R_{AA}: rapidity dependence

- Ratio of the R_{AA} vs. y to the R_{AA} for lyl < 0.3 in different p_T ranges
 - Large cancelation of systematics in ratio
- *R*_{AA} is flat with rapidity at low *p*_T
- R_{AA} decreases with rapidity at higher p_T

- Measuring jet quenching includes:
 - Inclusive energy loss through the suppression of hard scattering rates of single jets
 - Differential energy loss through jet correlations to study the path length dependence of energy loss

	0000
0000	

Jet structure modification by measuring charged particles in jets jets have a complicated internal structure that is modified in the medium

γ-jet asymmetry

- γ+jet used to look at energy loss of the recoiling jet since photons aren't expected to interact strongly with the medium
 - The initial production distributions are different

γ-jet asymmetry

- γ+jet used to look at energy loss of the recoiling jet since photons aren't expected to interact strongly with the medium
 - The initial production distributions are different
 - More likely to originate from quark jets than inclusive/ dijets so it's a probe of the flavor dependence

γ-jet asymmetry

- γ+jet used to look at energy loss of the recoiling jet since photons aren't expected to interact strongly with the medium
 - The initial production distributions are different
 - More likely to originate from quark jets than inclusive/ dijets so it's a probe of the flavor dependence

- Measured $x_{J\gamma}$ for $p_{T\gamma} > 60$ GeV, $p_{T,jet} > 30$ GeV, $\Delta \phi > 7\pi/8$
- Unfolded using 2D Bayesian unfolding in p_{T,jet} and p_{T,γ}

y-jet asymmetry: centrality

central Pb+Pb peaks x_{Jy} ~ 0.5 compared to pp at x_{Jy} ~ 1

y-jet asymmetry: centrality

- central Pb+Pb peaks $x_{J\gamma} \sim 0.5$ compared to pp at $x_{J\gamma} \sim 1$
- Pb+Pb becomes similar to pp in peripheral collisions

y-jet asymmetry: models

 Direct comparison of unfolded result to theory in pp and central Pb+Pb

 SCET_g describes the central Pb+Pb well but misses the peak at 1 in pp

- Measuring jet quenching includes:
 - Inclusive energy loss through the suppression of hard scattering rates of single jets
 - Differential energy loss through jet correlations to study the path length dependence of energy loss

Jet structure modification by measuring charged particles in jets and jet mass since jets have a complicated internal structure that is modified in the medium

Momentum broadening: soft gluon emission that widens the jets and causes e-loss outside jet cone

Momentum broadening: soft gluon emission that widens the jets and causes e-loss outside jet cone

Momentum broadening: soft gluon emission that widens the jets and causes e-loss outside jet cone

Decoherence: medium resolves subjets and modifies them as separate jets

Momentum broadening: soft gluon emission that widens the jets and causes e-loss outside jet cone

Decoherence: medium resolves subjets and modifies them as separate jets

Medium responds to jet and recoils, causing a wake that pushes soft particles back inside the jet

 Jet mass is reconstructed from summing the energy and p_T of ^π calorimeter towers inside of jets

$$n = \sqrt{(\sum_{i \in J} E_i)^2 - (\sum_{i \in J} \overrightarrow{p_i})^2)}$$

 Ratio m/p_T (like the opening angle θ) which is easier to unfold and has a weak dependence on p_T

 Jet mass is reconstructed from summing the energy and p_T of ^m calorimeter towers inside of jets

$$p = \sqrt{(\sum_{i \in J} E_i)^2 - (\sum_{i \in J} \overrightarrow{p_i})^2)}$$

 Ratio m/p_T (like the opening angle θ) which is easier to unfold and has a weak dependence on p_T

 Jet mass is reconstructed from summing the energy and p_T of ^m calorimeter towers inside of jets

$$= \sqrt{(\sum_{i \in J} E_i)^2 - (\sum_{i \in J} \overrightarrow{p_i})^2)}$$

• Ratio m/ p_T (like the opening angle θ) which is easier to unfold and has a weak dependence on p_T

 Jet mass is reconstructed from summing the energy and p_T of ^m calorimeter towers inside of jets

$$= \sqrt{(\sum_{i\in J} E_i)^2 - (\sum_{i\in J} \overrightarrow{p_i})^2)}$$

• Ratio m/ p_T (like the opening angle θ) which is easier to unfold and has a weak dependence on p_T

wide jets:

and m/p_T

higher mass

- In medium:
 - Jet widens -> larger mass
 - Jet widens too much and energy moves outside of jet cone-> smaller mass
Jet mass

 ATLAS m/p_T in Pb+Pb and pp

Jet fragmentation functions

- Measures how charged particles are distributed within a jet by looking at number of charged particles in jets (N_{ch})
 - z measures the fraction of the track momentum in the jet momentum low z, low high z, high track pT track pT
- R=0.4 jets with charged tracks > 1 GeV

Jet fragmentation functions • FF are fully 2D unfolded in jet p_T and z (or p_T ^{trk})

16/26

Internal structure $R_{D(z)} = \frac{L}{2}$

 Jets are more modified in central collisions

Ζ

Jets are more modified in central collisions

Consistent between 2.76 and 5.02 TeV

Enhancement at low z and suppression at intermediate z

Energy transferred to soft particles in and around the jet

Ζ

Jets are more modified in central collisions

Consistent between 2.76 and 5.02 TeV

Enhancement at low z and suppression at intermediate z

Energy transferred to soft particles in

Enhancement at high z and around the jet

More quark jets at high z that could be modified differently than gluon jets

Internal structure: pt dep. arXiv:1805.05424

- No jet p_T dependence at high z
- Less enhancement for higher p_T at low z
 Described by model

Internal structure: p_T dep. arXiv:1805.05424 2.5 2.5ly ^{jet} l < 2.1 anti- $k_t R$ =0.4 jets ATLAS ATLAS ly ^{jet} l < 2.1 anti- $k_t R$ =0.4 jets $R_{D(z)}$ $B_{D(p_{\tau})}$ $126 < p_{\tau}^{\text{jet}} < 158 \text{ GeV}$ SCET g=2.1 data $200 < p_{_{ au}}^{^{ m jet}} < 251 \; { m GeV}$ $126 < p_{\tau}^{\text{jet}} < 158 \,\text{GeV}$ 316 < $p_{\tau}^{\rm jet}$ < 398 GeV $200 < p_{-}^{\text{jet}} < 251 \text{ GeV}$ Hybrid Model, $R_{res} = 3$ $316 < p_{\tau}^{\text{jet}} < 398 \,\text{GeV}$ $126 < p_{\pm}^{\text{jet}} < 158 \text{ GeV}$ $200 < p_{-}^{\text{jet}} < 251 \text{ GeV}$ 1.5 $316 < p_{\tau}^{\text{jet}} < 398 \text{ GeV}$ Pb+Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, 0.49 nb⁻¹, 0-10% Pb+Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, 0.49 nb⁻¹, 0-10% pp, $\sqrt{s} = 5.02 \text{ TeV}$, 25 pb⁻¹ 0.5 pp, $\sqrt{s} = 5.02 \text{ TeV}$, 25 pb^{-1} 0.5 10^{-2} $p_{T}^{10^2}$ [GeV] 10^{-1} 10

- No jet p_T dependence at high z
- Less enhancement for higher p_T at low z
 Described by model
- Jet p_T dependence shows more low p_T tracks at high p_T
 - response of medium to jets?
- Model describes jet p_T dependence at high track p_T

Internal structure: rapidity dep.

- Ratio of R_{D(z)} at fixed lyl intervals to lyl < 0.3
 - No significant rapidity dependence
 - Consistent with models

Internal structure: rapidity dep.

- Ratio of R_{D(z)} at fixed lyl intervals to lyl < 0.3
 - No significant rapidity dependence
 - Consistent with models
 - Slight hint of an enhancement at high z

Jet fragmentation functions

- Measures how charged particles are distributed within a jet by looking at number of charged particles in jets (N_{ch})
 - z measures the fraction
 of the track momentum
 in the jet momentum

low<u>z, low</u> track *p*⊤

 $\frac{10w}{p_{T}} \qquad \frac{high z, high}{track p_{T}}$

 R=0.4 jets with charged tracks > 1 GeV

$$D(p_{\mathrm{T}}, r) = rac{1}{N_{\mathrm{jet}}} rac{1}{2\pi r} rac{\mathrm{d}^2 n_{\mathrm{ch}}(r)}{\mathrm{d} r \mathrm{d} p_{\mathrm{T}}}$$

r measures the shape of the jet

Radial profile

 FFs as a function of radius to measure the jet rs rge in ant<math>rfloor for restrictions for restrictions for restrictions for restrictions for the second sec

ATLAS-CONF-2018-010

Radial profile

- FFs as a function of radius to measure the jet shape in and out of the jet cone in Pb+Pb compared to $pp \int_{10^2} \int_{$
 - Take the ratio of D(p_T, r) in Pb+Pb and pp to evaluate difference

 $D(p_{\mathrm{T}}, r) = \frac{1}{N_{\mathrm{jet}}} \frac{1}{2\pi r} \frac{\mathrm{d}^2 n_{\mathrm{ch}}(r)}{\mathrm{d} r \mathrm{d} p_{\mathrm{T}}}$

r 21/26

Internal structure: radial dep.

- Ratio of D(p_T , r) in Pb+Pb to pp as a function of radius shows $R_{D(p_T, r)}$
- Less modification with decreasing radius

 $\frac{D(p_{\rm T}, r)_{\rm PbPb}}{D(p_{\rm T}, r)_{\rm pp}}$

Internal structure: radial dep.

- Ratio of D(p_T, r) in Pb+Pb to pp as a function of radius shows
- Less modification with decreasing radius

 More soft
 particles outside ^(1, i) the jet cone

Less intermediate
 *p*_T particles outside
 the cone

 $R_{D(p_{\mathrm{T}},r)}$

 $\frac{D(p_{\rm T}, r)_{\rm PbPb}}{D(p_{\rm T}, r)_{\rm pp}}$

′ 22/26

Internal structure: radial dep.

- Ratio of D(p_T, r) in Pb+Pb to pp as a function of radius shows
- Less modification with decreasing radius
- More soft particles outside the jet cone
- Less intermediate
 *p*_T particles outside
 the cone
- Consistent with picture of jet broadening in the medium

 $R_{D(p_{\mathrm{T}},r)}$

 $\frac{D(p_{\rm T}, r)_{\rm PbPb}}{D(p_{\rm T}, r)_{\rm pp}}$

- Short, low statistics Xe+Xe run in 2017 at the LHC
- Motivation

- Short, low statistics Xe+Xe run in 2017 at the LHC
- Motivation

Jet quenching expected to be less for lighter nuclei (Xe¹²⁹ vs. Pb²⁰⁸) due to the reduced medium density and smaller path lengths

- Short, low statistics Xe+Xe run in 2017 at the LHC
- Motivation
 - Jet quenching expected to be less for lighter nuclei (Xe¹²⁹ vs. Pb²⁰⁸) due to the reduced medium density and smaller path lengths
 - Lighter nuclei should have a smaller underlying event in central collisions

Showing that there is something interesting in the low statistics Xe+Xe motivates future runs at different collisions systems

- Short, low statistics Xe+Xe run in 2017 at the LHC
- Motivation
 - Jet quenching expected to be less for lighter nuclei (Xe¹²⁹ vs. Pb²⁰⁸) due to the reduced medium density and smaller path lengths
 - Lighter nuclei should have a smaller underlying event in central collisions

Showing that there is something interesting in the low statistics Xe+Xe motivates future runs at different collisions systems

Replicate the dijet asymmetry analysis in Xe+Xe and compare to pp and 2015 Pb+Pb (without unfolding)

ΣE_TFCal Pb vs. Xe

 The ΣE_T^{FCal} distributions are partitioned in centrality bins separately in Pb+Pb and Xe+Xe

ΣE_TFCal Pb vs. Xe

 The ΣE_T^{FCal} distributions are partitioned in centrality bins separately in Pb+Pb and Xe+Xe

ΣE_TFCal Pb vs. Xe

 The ΣE_T^{FCal} distributions are partitioned in centrality bins separately in Pb+Pb and Xe+Xe

*x*_J: centrality dependence *Similar geometry* ()

- Compare 2017 Xe+Xe to 2015 Pb+Pb
- x_J consistent between Pb+Pb and Xe+Xe for all centralities
- Xe+Xe smeared to Pb+Pb to account for differences in UE fluctuations

ATLAS-CONF-2018-007

Conclusion

- Wide variety of new results from ATLAS at 5.02 TeV allow for precision measurements of jet quenching
 An asymmetry was found in γ+jet systems
 Inclusive jets saw suppression out to a TeV and
 - observed a rapidity dependence to the suppression
 Measured differentially in jet mass
 - Es moscured interentially in jet mass
 - FFs measured jet internal structure modification
 Differentially in jet momentum, rapidity, and shape
 New Xe+Xe results
- These precise measurements have careful underlying event subtraction, reduced systematic uncertainties, and unfolding for detector effects

Many measurements compared to theoretical calculations which can help constrain models

~4x more Pb+Pb data at 5.02 TeV from 2018 to analyze!

Backup

Background is subtracted using an iterative procedure that is modulated by harmonic flow with amplitude vn

and phase Ψ_n

$$E_{Tj}^{sub} = E_{Tj} - A_j \rho_i(\eta_j) (1 + 2v_{ni} \cos 2(\phi_j - \psi_n))$$

Find the jets

Remove the jet "seeds" and estimate the transverse energy density ρ (η-dependent)

- Find v_n and Ψ_n integrated over η but excluding regions with jets
- Subtract this energy from the towers inside the jet

Jet reconstruction

- Re-find new jet "seeds" and repeat procedure
- Re-run jet finding to find jets with background removed!

Performance

 $ho_{ op}_{ op}$

- Large uncorrelated underlying event (UE) that varies with η, Φ and event
 - Subtracted with iterative procedure modulated by harmonic flow
- MC jets are embedded into real Pb+Pb data and reconstructed in the same way as data

JER in 0-10% is ~16% at 100 GeV and decreases to ~6%.

remaining JES/JER

69

Jet performance: JES

γ-jet JER

71

γ-jet background subtraction

- Two contributions to the background:
 - Combinatoric: estimated by embedding PYTHIA8 photo+jet events into real Pb+Pb data
 - Dijet: per-photon distributions subtracted using nontight photons, after scaling by the photon purity

Combinatoric important at low p_T, dijet at high p_T
Effect of unfolding

pp moves jets the sharp peak at x_{Jγ} ~ 1

Central Pb+Pb depletes peak at 1 and moves jets to a rise around x_{Jγ} ~ 0.5

y-jet systematic uncertainties

- Jets:
 - JES is 5% at low p_T and decreases with p_T
 - Cross calibration: 1% addition JES uncertainty
 - JER is evaluated by increasing the resolutions measured in *pp* by a few percent
 - Uncertainty on flavor composition and different in flavor response is 2% at low p_T and decreases with p_T
 - Addition JES uncertainty in Pb+Pb that is 1% for p_T > 50 GeV and up to 5-10% above 50 GeV from comparing charged-particle jets to calorimeter jets, studying the response of simulated quenched jets, and residual non-closure of simulated jets at low p_T
- Photons:
 - Photon purities adjusted by their statistical uncertainties
 - Photon isolation cut increased by 2 GeV in both pp and Pb+Pb, which increases
 efficiency and lowers purity
 - Non-tight selection varied
 - Photon energy uncertainties evaluated in *pp* which are less than 1%
 - Assumption that the distribution of background photons factorizes

γ -jet asymmetry: p_T dep.

- central Pb+Pb peaks $x_{Jy} \sim 0.5$ compared to pp at $x_{Jy} \sim 1$
- Pb+Pb becomes similar to pp in peripheral collisions
- Slight *p*_{Tv} dependence observed
 - $80 < p_{Ty} < 100 \text{ GeV}$

12

γ -jet asymmetry: p_T dep.

- central Pb+Pb peaks $x_{Jy} \sim 0.5$ compared to pp at $x_{Jy} \sim 1$
- Pb+Pb becomes similar to pp in peripheral collisions
- Slight *p*_{Tv} dependence observed
 - $100 < p_{Ty} < 158 \text{ GeV}$

12

x_J systematics summary

2011 Pb+Pb x_J distribution X_{J} 2013 pp

- More asymmetry jets in central Pb+Pb than in pp
- Becomes like pp in peripheral

Pb+Pb

pp

ATLAS

anti- $k_{+}R = 0.4$ jets

10 - 20 %

RAA systematic uncertainties

 \cdot Jet energy scale

- Standard pp JES components + 5 TeV flavor and HI crosscalibration (following ATL-CONF-2015-016)
- HI specific uncertainty due to jet quenching (estimated using studies of the ratio of calo-jet to track-jet p_T)
- Jet energy resolution
 - Standard pp component
 - Established HI component
- Luminosity
- Nuclear thickness function
- Unfolding
 - By comparing to results unfolded using the response matrix without the reweighting

RAA systematics summary

uncertainties on the pp cross section

• uncertainties on Pb+Pb yields

uncertainties on R_{AA}

RAA VS. Npart

Fakes

- Fake, or "UE jets", are jets that are reconstructed from upward fluctuations due the UE
- Removed before unfolding
- RAA fake rejection: look at different Σp_{T}^{trk} cuts for charged tracks with $p_{T^{trk}} > 4 \text{ GeV}$ within $\Delta R < 0.4$ of jets

- Fakes mostly contribute below ~75 GeV in 0-10%
- Above this see little change so use $\Sigma p_T^{trk} > 8$ GeV as the rejection $R_{\rm AA}$ 0.9 ATLAS

 Determines the measurement kinematic cut after unfolding to be 100 GeV

dN

Model comparisons

- Lorentz Boltzmann Transport (LBT) model:
 - MC model of parton propagation
 - Elastic and inelastic e-loss
 - UE estimate from hydrodynamics with medium recoil and recoil propagation
 Y. He, T. Luo, X.-N. Wang and Y. Zhu
- Soft Collinear Effective Field Theory (SCETg):
 - EFT for soft and collinear particles
 - Jets and their interactions with the medium are mediated by a Glauber gluon exchange
 - Modifications are made to the splitting functions
 - No medium recoil

• Effective Quenching (EQ) model:

<u>Y.-T. Chien, A. Emerman, Z.-B.</u> <u>Kang, G. Ovanesyan and I. Vitev</u>

two downward shifts in p_T, larger for gluons
B. Cole and M. Spousta

Tracking efficiencies

Systematic uncertainties on Pb+Pb R_{D(z)}

- · Jet energy scale
- Jet energy resolution
- Unfolding
- Track reconstruction
- MC non-closure

Internal structure: photon tagged

- FF in γ-tagged jets compared to inclusive jets
- γ-tagged jets have stronger modification in central
 - This could be do to different jet p_T selections in the two analyses
 - Inclusive FF is also preferentially selecting jets that have lost less energy
- Better agreement in 30-40%

Internal structure: radial dep.

- Jet *p*_T depende jet shape mod^{CC}
- More soft particles at high jet p_T
- No significant dependence on jet p_T at intermediate p_T
- Consistent with inclusive FF measurement

UE fluctuations

 Due to the difference in the UE in Pb+Pb and Xe+Xe, a study of the fluctuations of the UE was performed

UE fluctuations

• Due to the difference in the UE in Pb+Pb and Xe+Xe, a study of the fluctuations of the UE was performed

 Sum the E_T in 7x7 windows of towers in η-φ
 Slide through each window in the event and get the average <E_T> and standard deviation σ(E_T)

UE fluctuations

- Due to the difference in the UE in Pb+Pb and Xe+Xe, a study of the fluctuations of the UE was performed
 - Sum the *E*_T in 7x7 windows of towers in η - ϕ Slide through each window in the event and get the average $\langle E_T \rangle$ and standard deviation $\sigma(E_T)$
 - Take the average $\overline{\sigma}(E_T)$ of the $\sigma(E_T)$ of all the events in $\frac{2}{2}$ a particular ΣE_TFCal bin
- *Pb+Pb* slightly larger than *Xe+Xe*
- Difference represents the difference between the UE contributions to the JER and is used as an "uncertainty" in the measurement

Xe systematics uncertainties

- Jet energy scale (JES)
 - Baseline 11 nuisance parameters from *in situ* calibration (stand pp calibration) with additional parameters due to flavor response and composition and cross calibration)
 - Additional one in Xe+Xe and P+Pb due to the detector response to quenched jets that is by comparing the ratio of the sum of pT of the tracks associated with a reconstructed jet to the reconstructed jet pT between data and MC
 - Uncertainty due the the residual non-closure in the JES in the MC
 - Evaluated on the reconstructed pT so that pTreco' = pTreco(1+/-uncertainty)
- Jet energy resolution (JER)
 - standard baseline JER from pp and cross calibration
 - HI specific for the difference in fluctuations in data and MC

Summary of systematic uncertainties

Uncertainty on Xe+Xe: all of the combined systematic uncertainties on the JES as described in the previous slide

Pb+Pb and pp are only used for a comparison to Xe+Xe so only the uncertainties that are different between them and Xe+Xe are needed

> **Uncertainty on Pb+Pb:** Only the uncertainties that Only the uncertainties that are uncorrelated between Pb+Pb and Xe+Xe are included on the pp and Xe+Xe are included on the pp result Pb+Pb result

- centrality dependence JES in Pb+Pb
- difference between the MC non-closure uncertainty in Xe+Xe and Pb+Pb

Uncertainty on pp:

are uncorrelated between

- centrality dependence JES in Xe+Xe

- difference between the MC non-closure uncertainty in Xe+Xe and pp

xJ: ΣE_T FCal dependence Similar density

- Compare 2017 Xe+Xe to 2015 Pb+Pb
- x_J consistent between
 Pb+Pb and Xe+Xe for
 all ΣE_T^{FCal}
- Xe+Xe smeared to Pb+Pb to account for differences in UE fluctuations

ATLAS-CONF-2018-007

