

Measurement of Directed Flow of Identified Particles in Au+Au √s_{NN}=4.5 GeV Fixed-target Collisions at STAR

Hiroki Kato for the STAR Collaboration WWND2019 Jan. 9, 2019

- ✓ Recent flow analysis in the STAR fixed-target program
- ✓ Motivation
- ✓ Analysis method (EP method)
- ✓ p_T dependence of directed flow
- Reprive the second s
- ✓ v₁ slope
- ✓ Summary and Outlook

STAR STAR fixed-target program (FXT)

1.3M events from half hour test run top 30% central trigger. Au+Au $\sqrt{s_{NN}}$ =4.5 GeV

STAR Previous flow results from FXT

E895 PRL 84(2000) 5488 STAR PRL 112(2014) 162301

1.2

1.6

1.8 p_{_} (GeV/c)

0.02

STAR, Quark Matter 2018

STAR Directed flow

Directed flow is ... $v_1 = \langle \cos(\phi - \Psi) \rangle$

- ✓ Evaluated by the coefficients of the 1st harmonic in the Fourier expansion.
- ✓ Generated by the interaction between participants and spectators.
- Observable signature that was suggested to be sensitive to the first-order phase transition. (softest point)
- ✓ Possible probe of search for the QGP signature. (anti-flow)

STAR Directed flow analysis

STAR PRL 120 (2018) 062301

- ✓ Opposite sign of dv₁/dy at midrapidity is observed for baryons and mesons at low energies.
- ✓ Minimum at √s_{NN}=10-20 GeV for net baryon is observed.

This is called "softest point" and may be a possible sign of the first-order phase transition.

- Models cannot explain energy dependence of the directed flow
 - experiment:minimum at 10-20 GeV model:minimum at 4 GeV

H. Stocker NPA750, 121-147(2005)

STAR Motivation

- The directed flow is an observable probe which suggested to be sensitive to the first-order phase transition.
- \checkmark The fixed-target program extends the RHIC BES to higher $\mu_B.$

To clarify the structure of the first-order phase transition, study the characteristics of directed flow at low energies is important.

The Solenoidal Tracker At RHIC star

Beam-Beam Counter

Time-Of-Flight detector

Time Projection Chamber

Gold Target was installed inside the vacuum pipe at z = 211 cm

Data Set

•

•

- ✓ Au+Au : √s_{NN}=4.5 GeV
- ✓ Test run conducted in 2015
- ✓ 1.3 central million events
- ✓ Midrapidity : -1.52

Event Selection

- ✓ Vertex X = -1.5 to 1.0 cm
- ✓ Vertex Y = -2.5 to -1.0 cm
- ✓ Vertex Z = 210 to 212 cm

Track Selection

- ✓ nHitsFit > 20
- ✓ nHitFit/nHitsPoss > 0.52

STAR Particle identification

۰п

- ✓ Inσ(π)I < 2
 ✓ 0.2 < p_T GeV/c
 ✓ p < 1.6 GeV/c
 ✓ -0.15 < m² < 0.14 (GeV/c²)² (If TOF available)
 K
 ✓ Inσ(K)I < 2
 ✓ p_T < 2.0 GeV/c
 - ✓ $0.14 < m^2 < 0.4$ (GeV/c²)² (If TOF available)

Ρ

- ✓ Inσ(p)I < 2</p>
- ✓ 0.4 < p_T < 2.0 GeV/c
- ✓ $0.4 < m^2 < 1.4$ (GeV/c²)² (If TOF available)
- ✓ If no hit in TOF, but satisfying other selection criteria, track is kept as a proton candidate.

STAR Deuteron identification

1.Define event plane from the direction in which the generated particles are emitted.

$$\Psi_1 = \tan^{-1} \left(\frac{\Sigma w_i \sin \phi_i}{\Sigma w_i \cos \phi_i} \right)$$

2.Event plane distortion from detector non-uniformity and/or beam offset are corrected using the recentering and flattening methods.

3.Perform the Fourier expansion of the angular distribution of particles.

$$\frac{dN}{d(\phi-\Psi_n)} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos\left[n(\phi-\Psi_n)\right] \qquad \Longrightarrow \qquad v_1 = \langle \cos(\phi-\Psi) \rangle$$

4.Measured v_n include the effect of the finite detector resolution that can be corrected using so-called event plane resolution correction.

I. Selyuzhenkov and S. Voloshin, PRC 77 (2008), 034904

A.M.Poskanzer, S.A.Voloshin, PRC 58 (1998), 1671-1678

STAR Event plane method : 2 or 3 subevents

2 subevents

Divide into 2 groups using random number (group A and B)

Because A and B are essentially the same, we calculate resolution using 2 subevents.

3 subevents

Assuming a true event plane, calculate the resolution by taking correlations for each two of three regions.

$$Res_A = \sqrt{\frac{\sigma_{AB} \cdot \sigma_{AC}}{\sigma_{BC}}}$$

STAR EP correlation and resolution

<cos(Ψ_A - Ψ_B)>

EP Correlation

<sin(Ψ_A - Ψ_B)>

STAR Systematic uncertainty

- 1. 2 TPC subevent planes divided at y = -0.8, and BBC east.
- 2. Randomly assigning particles to subevent A or B. Use charged particles.
- 3. Randomly assigning particles to subevent A or B. Use not protons.
- 4. Randomly assigning particles to subevent A or B. Use protons only.

3 subevents

$$Res_A = \sqrt{\frac{\sigma_{AB} \cdot \sigma_{AC}}{\sigma_{BC}}}$$

Systematic uncertainty from EP definition difference.

2 subevents

$$Res_A = Res_B = \sqrt{\langle cos(\Psi_A - \Psi_B) \rangle}$$

Systematic uncertainty

$$Err_{sys}^2 = \frac{\sum_{n=1}^{N} (x_i - x_{ave})^2}{N}$$

STAR *p*_T dependence of v₁ (π, K)

STAR *p***T** *dependence of v*¹ (*p*, *d*)

 v_1 increases with increasing p_T at 1.0< y_{cm} <1.5

Detector acceptance effects have been taken into account

STAR Rapidity dependence of V₁ (π, K)

STAR Rapidity dependence of v1 (p, d)

Vcm

reflected marker shown stat. err only

п, К

✓ v_1 sign is negative at low p_T , and is positive at high p_T . ✓ p_T dependence is consistent for π + , π - and K.

p, d

 $\checkmark v_1$ increases with increasing p_T .

 $\checkmark v_1$ of p and d become closer after performing the m_T-scaling.

STAR PT dependence of **V**1 slope

Centrality : 5-30%

STAR PT dependence of V1 slope

- ✓ We presented the results of the identified particle directed flow at $\sqrt{s_{NN}} = 4.5$ GeV in Au+Au fixed-target collisions as a function of p_T and rapidity.
- ✓ Baryon and meson dv₁/dy slopes indicate opposite sign due to the shadowing effect.
- ✓ v₁ of baryons and mesons have the same sign at high-p_T region (> 0.8 GeV/c), which is averaged out in the previous measurement.
- ✓ The STAR FXT physics program is now ongoing (>300 million event at 3.0 and 7.2 GeV in 2018, will acquire > 100 million events at series of energies from 3.2 to 7.7 GeV from 2019-2021). Higher statistics will allow a more definitive physics message.

TU Darmstadt(Daniel Cebra)

STAR EP resolution for each region

- No correction
- Re-centering
- Re-centering+Flattening

