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Charmonium production in 
hadron collisions
• Charmonium is dominantly produced by gluon fusion in p+p collisions at 

RHIC energy.
• J/! meson is a bound state of a " ̅" pair with spin 1.
• Decays into $%$&or '%'& with a large branching ratio.  

• Nuclear modification in small to large systems : Effects of QGP 
(suppression and flow) and Cold Nuclear Matter effects (rapidity, 
centrality and pT dependent modification) on J/! production.

• Correlation with initial proton spin in different collision systems: path-
length dependence of spin dependent initial state effects

• Spin alignment of decay leptons relative to J/! : additional handle on 
distinguishing production mechanisms.
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J/! polarization in p+p collisions

• Unpolarized p+p collisions. 
• Hadronization of charmonium in unpolarized p+p

collisions accessible in Non-relativistic QCD 
formalism.
• Predominantly prompt J/! production in p+p

collisions will help map out color singlet and octet 
production mechanisms.
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J/! Production mechanisms
• In 90’s, it was proposed that color singlet fragmentation 

was the dominant J/! production mechanism at high 
pT.
• Prediction based on this idea fell more than an order of 

magnitude below the inclusive !’ cross section 
measurements by CDF – ” CDF !’ anomaly”.
• NRQCD formalism was introduced as a solution that 

included an intermediate color octet state binding into 
a color singlet state. It was later supported by the CDF 
data.
• Inclusive production cross-section measurements of S 

wave charmonium states became available by other 
experiments and all reasonably support the NRQCD 
calculation. 
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• Polarization measurements have been proposed as an 
independent test on the NRQCD approach. 
• Global analysis of various data sets has shown that 

color octet state is the dominant mechanism for hadro-
and photo-production of j/! and well describe 
polarization data. 
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Previous quakonium polarization 
measurements

• CMS/LHCb/ALICE at LHC, CDF at Tevatron have seen no strong 
preference in large net polarization in all 5 S wave quakonium
states. 
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Relativistic Heavy Ion Collider 
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• Located in Long Island, New York USA
• World’s only polarized proton collider 



• d
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ZDC |η|>5.9 

MPC/MPC-EX/

PHENIX
overview

} Multiple golden data sets (      ) at 
various collision energies.

} This talk will cover recent results 
and ongoing analysis that utilize 
data sets from p+p at √s = 200 
and 510 GeV.



Heavy flavor measurements via di-
muon pairs in PHENIX forward arm
• Forward arm covers full azimuth and  1.2<|y|< 2.4
• Theoretical prediction accessible by NRQCD.
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Muon Identification

• MuTr : 3 stations of cathode-strip 
tracking chambers inside a radial 
magnetic field à momentum 
reconstruction 

• MuID : 5 sensitive layers, each 
with 1 vertical + 1 horizontal 
Iarocci tubes interweaved with 
steel absorber plate. à hadron 
rejection



J/! in di-muon mass spectra 
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South Arm
-2.4 < "#< -1.2

arXiv:1805.02448

J/! dominant region, with relevant background sources : 
c ̅% b&' DY and !’ (physical) and combinatorial background.



J/! polarization measurement 
• Spin alignment of decay lepton with respect to J/!. 
• Measured via angular distribution of a decay lepton 

in J/! rest frame.
• Freedom in choice of z-axis.
• Invariant variables thanks to rotational invariance. 
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Polarization measurement frames
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• Helicity frame: 
• "̂ ∥ momentum of J/$. 

• Collins-Soper frame:
• "̂ ∥ (&'−&)).

• Gottfried Jackson frame:
• "̂ ∥ +'



Angular decay distributions

• (Top to bottom)   
Frame : HX, CS, GJF 
and GJB 
• (Left to right)              

pT : 2-3, 3-4 and 4-10 
GeV/c
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Simultaneously fit all 
angular coefficients to  
angular distributions shown 
here.



J/! to di-muon spin alignment
in PHENIX Forward Arm
• Results for "# and $".
• Better agreement at higher pT with NRQCD calculations 

by H.Shao et al. [10.1103/PhysRevD.83.037501, arXiv:1012.1954],[JHEP05 (2015) 103, 
arXiv:1411.3300]

• Frame invariant variable $" consistent in different frames.
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Heavy flavor measurements via di-
electron pairs in PHENIX central arm
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• Central arm covers half azimuth and |y|< 0.35.

• Different arm combination can access different pT range.

Electron Identification

• RICH : Ring Imaging Cherenkov 

detector, > 99% efficient for 

electrons pT > 0.5 GeV/c

• EMCal : 2 different types of 

Electro-magnetic Calorimeters. 

PbGl and PbSc. 

• DC : Drift Chamber, gas 

proportional wire chamber. West
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J/! to di-electron spin alignment 
in PHENIX central arm
• Results of 1-dimensional analysis.
• "# measurement shows agreement with NRQCD based Color Octet 

Model (COM) prediction. [10.1103/PhysRevD.81.014020, arXiv:0911.2113]

• Full 3-dimensional analysis needed in order to draw physics 
interpretation.  
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• Full 3-dimensional 
analysis in progress 
with √s = 510 GeV high 
pT enhanced data 
sample. 
• Localized statistics due 

to limited azimuthal 
coverage : systematic 
effects need to be 
addressed with great 
care. 
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Full 3-dimensional analysis of 
J/" polarization at midrapidity

Same Arm vs. Opposite Arms

Invariant mass, GeV

Electron and positron in opposite arms

Electron and positron in the same arm

We will consider two pT bins:
pT < 3 GeV/c (opposite arms)
pT > 3 GeV/c (east-east combinations)

single simulated J/y
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Decay angular distributions
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• (Top to bottom)   
Frame : HX, CS, GJF
• (Left to right)              

pT : 0.-2.5, 2.5-10 
GeV/c
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Analysis method (i)

• Monte Carlo simulation developed in order to 
generate data for acceptance*efficiency corrections.  
• Simulator emulates data acquisition system and 

mixes triggers with different energy thresholds and 
pre-scale factors.  
• Tested with data being analyzed, well describes all 

possible combinations of mixed triggered data.
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Analysis method (ii)

• 3 different approaches to determine decay angular 
coefficients and their uncertainties. 
• !" minimization
• Maximum log likelihood method : Poisson statistics better 

treats low statistics measurements. 
• Sampling method : randomize central value of each 

measurement according to Gaussian distribution and fit 
either by minimizing !" or maximizing log likelihood function.

• Tested with fake data with no polarization
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Sampling method
NOT from real data!
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J/! dN/pT spectra at midrapidity

• Work in progress
• Data at at √s = 510 GeV indicates significant 

hardening of J/psi production in comparison with 
√s = 200 GeV.  
• Shape of pT spectra a determining factor on decay 

angular coefficients.
• Uncertainties on pT spectra expected to be a major 

source of systematic uncertainties.
• J/! cross section provides information on 

dominant production mechanism in its own right. 
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Outlook

• At 200 GeV, it has been known from cross section 
measurements that color octet hadronization is 
dominant mechanism in PHENIX acceptance. 
• Full NRQCD calculations for J/! production and 

polarization at midrapidity √s= 510 GeV are not 
available at the moment.
• Yield as well as rapidity dependent polarization 

measurements can shed light on discrepancy between 
data and theory seen at low J/! pT at forward rapidity.
• When included in global analysis, universality of LDME 

can be tested for NRQCD. 
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Summary

• Negative !" seen in data taken from p+p collisions at 510 GeV 
with its value increasing with pT in J/# to di-muon decay 
into forward rapidity.
• "$ measured in midrapidity at 200 GeV shows agreement 

with COM prediction at 1.5 < pT < 5 GeV/c.
• Full 3-d analysis using higher pT enhanced data sample from 

510 GeV p+p collisions is in progress for complete 
interpretation on polarization. 
• Polarization of J/# measured at mid rapidity as well as 

forward rapidity will provide additional handle on mapping 
out its production mechanisms.
• J/# dN/dpT measurement under way and cross section 

measurement will be an excellent cross check on theory 
predictions.
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