The 35th Winter Workshop on Nuclear Dynamics

J/ψ production and polarization at forward and mid-rapidity in p + p Collisions at RHIC

Sookhyun Lee (Iowa State University) for the PHENIX collaboration January 8, 2019

Charmonium production in hadron collisions

- Charmonium is dominantly produced by gluon fusion in p+p collisions at RHIC energy.
- J/ ψ meson is a bound state of a $c\bar{c}$ pair with spin 1.
- Decays into $\mu^+\mu^-$ or e^+e^- with a large branching ratio.
- Nuclear modification in small to large systems : Effects of QGP (suppression and flow) and Cold Nuclear Matter effects (rapidity, centrality and pT dependent modification) on J/ψ production.
- Correlation with initial proton spin in different collision systems: *path-length dependence of spin dependent initial state effects*

• Spin alignment of decay leptons relative to J/ ψ : additional handle on distinguishing production mechanisms.

J/ ψ polarization in p+p collisions

- Unpolarized p+p collisions.
- Hadronization of charmonium in unpolarized p+p collisions accessible in Non-relativistic QCD formalism.
- Predominantly prompt J/ ψ production in p+p collisions will help map out color singlet and octet production mechanisms.

J/ ψ Production mechanisms

- In 90's, it was proposed that color singlet fragmentation was the dominant J/ ψ production mechanism at high p_T .
- Prediction based on this idea fell more than an order of magnitude below the inclusive ψ' cross section measurements by CDF " CDF ψ' anomaly".
- NRQCD formalism was introduced as a solution that included an intermediate color octet state binding into a color singlet state. It was later supported by the CDF data.
- Inclusive production cross-section measurements of S wave charmonium states became available by other experiments and all reasonably support the NRQCD calculation.

J/ ψ Production mechanisms

- Polarization measurements have been proposed as an independent test on the NRQCD approach.
- Global analysis of various data sets has shown that color octet state is the dominant mechanism for hadro-and photo-production of j/ ψ and well describe polarization data.

Previous quakonium polarization measurements

 CMS/LHCb/ALICE at LHC, CDF at Tevatron have seen no strong preference in large net polarization in all 5 S wave quakonium states.

Relativistic Heavy Ion Collider

- Located in Long Island, New York USA
- World's only polarized proton collider

	20	200	1 and the second						
√s [GeV]	p+p	p+AI	p+Au	d	³ He <mark>+Au</mark>	Cut	Cu+Au	Au+Au	Utu
510	Ø								
200		Ì	E	Ø	E		\checkmark	Ø	
130								Ø	
62.4	\bigcirc							Ø	
39				Ø				Ø	
27									
20									
14.5									
7.7									

- This talk will cover recent results and ongoing analysis that utilize data sets from p+p at √s = 200 and 510 GeV.

Heavy flavor measurements via dimuon pairs in PHENIX forward arm

- Forward arm covers full azimuth and 1.2<|y|<2.4
- Theoretical prediction accessible by NRQCD.

Muon Identification

- MuTr : 3 stations of cathode-strip tracking chambers inside a radial magnetic field → momentum reconstruction
- MuID : 5 sensitive layers, each with 1 vertical + 1 horizontal larocci tubes interweaved with steel absorber plate. → hadron rejection

J/ ψ in di-muon mass spectra

 $c\bar{c}$ $b\bar{b}$ DY and ψ' (physical) and combinatorial background.

J/ ψ polarization measurement

- Spin alignment of decay lepton with respect to J/ ψ .
- Measured via angular distribution of a decay lepton in J/ ψ rest frame.
- Freedom in choice of z-axis.
- Invariant variables thanks to rotational invariance.

$$\mathbf{Y} \qquad \frac{dN}{d\Omega} \propto 1 + \lambda_{\theta} \cos^{2}\theta + \lambda_{\theta\varphi} \sin^{2}\theta \cos^{2}\phi + \lambda_{\varphi} \sin^{2}\theta \cos\phi$$

$$\mathbf{V} \qquad \mathbf{V} \qquad \mathbf{V}$$

Polarization measurement frames

- Helicity frame:
 - $\hat{z} \parallel \text{momentum of J}/\psi$.
- Collins-Soper frame:
 - $\hat{z} \parallel (\mathbf{k}_1 \mathbf{k}_2)$.
- Gottfried Jackson frame:

Angular decay distributions

Simultaneously fit all angular coefficients to angular distributions shown here.

- (Top to bottom)
 Frame : HX, CS, GJF
 and GJB
- (Left to right) pT : 2-3, 3-4 and 4-10 GeV/c

J/ψ to di-muon spin alignment in PHENIX Forward Arm

- Results for λ_{ϑ} and $\tilde{\lambda}$.
- Better agreement at higher pT with NRQCD calculations by H.Shao et al. [10.1103/PhysRevD.83.037501, arXiv:1012.1954],[JHEP05 (2015) 103, arXiv:1411.3300]
- Frame invariant variable $\tilde{\lambda}$ consistent in different frames.

Heavy flavor measurements via dielectron pairs in PHENIX central arm

- Central arm covers half azimuth and |y|< 0.35.
- Different arm combination can access different p_T range.

Electron Identification

- RICH : Ring Imaging Cherenkov detector, > 99% efficient for electrons p_T > 0.5 GeV/c
- EMCal : 2 different types of Electro-magnetic Calorimeters.
 PbGl and PbSc.
- DC : Drift Chamber, gas proportional wire chamber.

J/ψ to di-electron spin alignment in PHENIX central arm

• Results of 1-dimensional analysis.

$$\frac{d\sigma}{d\cos\theta} = A(1 + \lambda_{\theta} \cos^2\theta)$$

- λ_{θ} measurement shows agreement with NRQCD based Color Octet Model (COM) prediction. [10.1103/PhysRevD.81.014020, arXiv:0911.2113]
- Full 3-dimensional analysis needed in order to draw physics interpretation.

Full 3-dimensional analysis of J/ ψ polarization at midrapidity

- Full 3-dimensional analysis in progress with √s = 510 GeV high p_T enhanced data sample.
- Localized statistics due to limited azimuthal coverage : systematic effects need to be addressed with great care.

16

Decay angular distributions

- (Top to bottom) Frame : HX, CS, GJF
- (Left to right)
 pT : 0.-2.5, 2.5-10
 GeV/c

Analysis method (i)

- Monte Carlo simulation developed in order to generate data for acceptance*efficiency corrections.
- Simulator emulates data acquisition system and mixes triggers with different energy thresholds and pre-scale factors.
- Tested with data being analyzed, well describes all possible combinations of mixed triggered data.

Analysis method (ii)

- 3 different approaches to determine decay angular coefficients and their uncertainties.
 - χ^2 minimization
 - Maximum log likelihood method : Poisson statistics better treats low statistics measurements.
 - Sampling method : randomize central value of each measurement according to Gaussian distribution and fit either by minimizing χ^2 or maximizing log likelihood function.
- Tested with fake data with no polarization

0.2

0.4 0.6

 Λ_{0A}

0.8

 $\Lambda_{\theta \phi}$

Maximum log -likelihood Method NOT from real data!

Sampling method NOT from real data!

Comparison between 3 frames NOT from real data!

J/ ψ dN/pT spectra at midrapidity

- Work in progress
- Data at at $\sqrt{s} = 510$ GeV indicates significant hardening of J/psi production in comparison with $\sqrt{s} = 200$ GeV.
- Shape of pT spectra a determining factor on decay angular coefficients.
- Uncertainties on pT spectra expected to be a major source of systematic uncertainties.
- J/ ψ cross section provides information on dominant production mechanism in its own right.

Outlook

- At 200 GeV, it has been known from cross section measurements that color octet hadronization is dominant mechanism in PHENIX acceptance.
- Full NRQCD calculations for J/ ψ production and polarization at midrapidity \sqrt{s} = 510 GeV are not available at the moment.
- Yield as well as rapidity dependent polarization measurements can shed light on discrepancy between data and theory seen at low J/ ψ p_T at forward rapidity.
- When included in global analysis, universality of LDME can be tested for NRQCD.

Summary

- Negative $\tilde{\lambda}$ seen in data taken from p+p collisions at 510 GeV with its value increasing with pT in J/ ψ to di-muon decay into forward rapidity.
- λ_{θ} measured in midrapidity at 200 GeV shows agreement with COM prediction at 1.5 < pT < 5 GeV/c.
- Full 3-d analysis using higher p_T enhanced data sample from 510 GeV p+p collisions is in progress for complete interpretation on polarization.
- Polarization of J/ψ measured at mid rapidity as well as forward rapidity will provide additional handle on mapping out its production mechanisms.
- J/ ψ dN/dp_T measurement under way and cross section measurement will be an excellent cross check on theory predictions.