

p-E and K-p femtoscopy in ALICE: going beyond scattering experiments

VALENTINA MANTOVANI SARTI FOR THE ALICE COLLABORATION

PHYSIK-DEPARTMENT - TECHNISCHE UNIVERSITÄT MÜNCHEN

35TH WINTER WORKSHOP ON NUCLEAR DYNAMICS (BEAVER CREEK, CL) - 10.01.2019

- 1. How do we learn about hadron-hadron interactions?
 - Scattering experiments: Kaon-Nucleon interaction
 - Hypernuclei: Hyperon-Nucleon interactions (focusing on Ξ hypernuclei)
- 2. Basics of Femtoscopy in small colliding systems in ALICE
- **3**. Two selected results:
 - Results for p-Ξ⁻ correlation function in p-Pb 5.02 TeV ⇒first evidence of strong attractive potential
 - Results for K⁻-p correlation function in pp 5,7,13 TeV ⇒high precision data close to threshold and first evidence of the opening of the isospin breaking channel K⁰-n

Why we are interested in hadron-hadron interactions?

- Hadron-hadron interactions are the pillars to understand
 - Behaviour of nuclear matter under extreme conditions (high T and/or densities)
 ⇒ Equation of State (EoS) for Neutron Stars (NSs)
 - 2. Existence of states beyond the standard quark model
 - \Rightarrow molecular states, di-baryons, pentaquarks...

Why we are interested in hadron-hadron interactions?

ТШ

- Hadron-hadron interactions are the pillars to understand
 - Behaviour of nuclear matter under extreme conditions (high T and/or densities)
 ⇒ Equation of State (EoS) for Neutron Stars (NSs)
 - 2. Existence of states beyond the standard quark model

⇒ molecular states, di-baryons, pentaquarks...

- Two examples to show the importance of a better understanding of hadron-hadron interactions:
 - Multistrange hyperon-nucleon interactions (ΞN) ⇒ the attractive/repulsive nature of the interaction drastically affects the EoS for NSs
 - No scattering data, only 1 hypernucleus observed so far
 - 2. Molecular state as $\Lambda(1405)$ emerging from the strongly attractive KN interaction
 - Kaonic atom data at threshold + old and imprecise scattering data above threshold

So far Hadron-Hadron interactions have been studied through Scattering Experiments and

- 1. Kaons are the lightest particles with strangeness content
 - interaction with protons and neutrons at very low energy is fundamental to constrain the low energy QCD sector
 - KN potential is **attractive** while KN is **repulsive**
- 2. A(1405) is the ONLY state commonly considered as a meson-baryon molecule

Kaon-Nucleon interaction: scattering experiments

Siddharta er al. Phys.Lett. B704 (2011) G.S. Abrams *et al.* Phys.Rev. 139 (1965) B454-B457

Hyperon-Nucleon interactions in Neutron Stars

 Hyperons should appear in dense neutron-rich matter starting from moderate-large densities
 Threshold depends on the Y-N interaction

140 **PNM** 120 10-1 100 oarticle. 10⁻² E [MeV] 80 $\Delta N + \Delta NN (I)$ 0.3 0.5 0.2 0.4 0.6 60 ρ [fm⁻³] ΛN ρ_0 40 20 0 0.2 0.3 0.4 0.5 0.0 0.1 0.6 ρ [fm⁻³]

D. Lonardoni, A. Lovato, S. Gandolfi, F. Pederiva Phys. Rev. Lett. 114, 092301 (2015) • The appearance of Hyperons **softens** the EoS

ChEFT Calculations from: T. Hell, W.W. PRC90 (2014) 045801

Maximum NS masses get smaller

- **HYPERNUCLEI DATA:**
 - **Λ hypernuclei** data: B _{Λ nucleus} = 30 MeV
 - **E hypernuclei** data show shallow attractive interaction [Kiso Evt]
 - **AA hypernuclei** exist as well showing **weakly** • attraction [Nagara Evt]
 - **\Sigma hypernuclei:** only ⁴₅He observed, ongoing at • JPARC-E13 Coll.

- •Hadron-Hadron interactions are fundamental to constrain:
 - Behavior of nuclear matter at large densities \Rightarrow EoS of NSs
 - Existence of states beyond the standard quark model
- •Two striking examples:
 - Kaon Nucleon \Rightarrow more precise data needed above threshold $\Rightarrow \Lambda(1405)$, low energy QCD models
 - Ξ Nucleon ⇒ only one hypernuclei event, data in vacuum needed ⇒ hyperon puzzle in NSs
- •Scattering experiments cannot be applied to multi-strange hyperons and cannot access the low-momentum range, hypernuclei experiments are often based on single events

•What is the next step? Femtoscopy

BASICS OF FEMTOSCOPY

Valentina Mantovani Sarti (TUM Physics Department – E62)

Source function $S(\vec{r})$

$$C(k) = 1 + \sum_{S} \rho_{S} \left[\frac{1}{2} \left| \frac{f^{S}(k)}{R_{G}^{\Lambda p}} \right|^{2} \left(1 - \frac{d_{0}^{S}}{2\sqrt{\pi}R_{G}^{\Lambda p}} \right) + 2 \frac{\mathcal{R}f^{S}(k)}{\sqrt{\pi}R_{G}^{\Lambda p}} F_{1}(QR_{G}^{\Lambda p}) - \frac{\mathcal{I}f^{S}(k)}{R_{G}^{\Lambda p}} F_{2}(QR_{G}^{\Lambda p}) \right]$$

Depends on scattering parameters, might locally break down for small sources

R. Lednicky and V. L. Lyuboshits, Sov. J. Nucl. Phys. 35, 770 (1982), [Yad. Fiz.35,1316(1981)]. CATS – Correlation Analysis Tool Using the Schrödinger Equation

(D.L.Mihaylov et al. Eur.Phys.J. C78 (2018) no.5,394)

ALICE

RESULTS

- We measure **p-p**, **p-Λ**, **Λ-Λ**, **p-Ξ**, **K-p correlations**
- Proton identification with TPC and TOF
- Reconstruction of hyperons
 - $\Lambda \rightarrow p\pi^-$ (BR ~ 64%)
 - $\Xi^- \rightarrow \Lambda \pi^-$ (BR ~ 100%)
- Datasets:
 - pp 13 TeV: 10·10⁸ Events
 - p-Pb 5.02 TeV: 6.0·10⁸ Events
- Assumption of a **common Gaussian source**
 - Constrained from p-p
 - Infer on p- Λ , p- Ξ , Λ - Λ and K-p interactions

Correlation function and Interactions

ali-prel-144793

$p-\Xi^{-}$ interaction and Neutron Stars

- Single-hyperon potential fundamental ingredient in EoS for NSs
- Repulsive interaction⇒Production of Ξ⁻ pushed to higher densities ⇒ stiffer EoS, higher masses
- A complication: in the case of neutron stars only the n-Ξ interaction is important, but for us neutrons are not detectable
- Experimentally challenging to isolate the I=1 channel

	I=0	l=1	Detectable
n-E ⁺	×	<mark>./</mark>	No
ρ -Ξ ⁰	×	<mark>./</mark>	Difficult
р-Ξ	<mark>./</mark>	<mark>.</mark>	<mark>Yes</mark>

Theoretical p- Ξ^- Correlation function ALICE Theoretical p- Ξ^- Correlation function $r_0^{=0.85 \text{ fm}}$ $r_0^{=0.85 \text{ fm}}$

R 10 0 10-10 20 ė 0F -20 -30 -40 -50 50 100 150 50 100 150 -60 k (MeV) k (MeV) 0.5 2.5 1.5 r (fm) D.L.Mihaylov, V.M.S, O.W.Arnold, L.Fabbietti, B.Hohlweger, Potential from Hatsuda et al., NPA967 (2017) 856, PoS

A.M.Mathis, Eur.Phys.J. C78 (2018) no.5,394

- Comparison Coulomb-only/Coulomb+Strong
- Strong potential from preliminary calculations from HAL-QCD collaboration

Lattice2016 (2017) 116)

 $C(k^*) = \frac{1}{9} \left(C_{I=0}^{S=0} + C_{I=1}^{S=0} \right) + \frac{3}{9} \left(C_{I=0}^{S=1} + C_{I=1}^{S=1} \right)$

$p-\Xi^-$ Correlation Function in p-Pb 5.02 TeV

G.S. Abrams et al. Phys.Rev. 139 (1965) B454-B457

- Clear effect of the opening of the isospin breaking channel $\bar{K}^0 N$ $\bar{K}^0 N \to K^- p$
- Unprecedented constraints for low energy QCD

Summary and Outlook:

- Femtoscopy is an excellent tool to study interactions of particle pairs
- Significant sensitivity to the interaction potentials
- Access to the multistrange hyperons sector
- Access to low momenta region with unprecedented high precision
- Observation of **attractive p-\Xi^- interaction for the first time** \Rightarrow set constraints on the average potential of Ξ hyperons at finite density for NS EoS
- In the meson-baryon sector \Rightarrow **First experimental observation of the** \bar{K}^0N **isospin** breaking opening channel \Rightarrow constraints close to threshold for low energy QCD models
- Extending the study to more hyperon-nucleon pairs (p-Ω, p-Σ⁰) and in the future to three-body interactions
- Looking forward to RUN3!

•You name the pair, we measure it:

- Work in progress at the moment: baryon-antibaryon, p- Ω , p- Σ^0 K-d,....
- <u>Universal and Robust Femto Analysis Tool</u>
 - Fit the correlation function of various systems simultaneously in combination with CATS
- Development of a formalism to study three particle correlations ⇒ three-body forces including hyperons

Backup Slides

) Decomposition of the p-p correlation function \prod

$$\begin{split} \{pp\} &= pp + p_{\Lambda}p + p_{\Lambda} + p_{\Lambda} + p_{\Sigma^+}p + p_{\Sigma^+}p_{\Sigma^+} \\ &+ p_{\Lambda}p_{\Sigma^+} + \tilde{p}p + \tilde{p}p_{\Lambda} + \tilde{p}p_{\Sigma^+} + \tilde{p}\tilde{p}, \end{split}$$

- Purity from MC (Pythia 8)
- Feed-down fractions from MC template fits to the DCA_{xy} distribution

p–p	
Pair	λ [%]
рр	75.19
рлр	15.06
$p_{\Lambda}p_{\Lambda}$	0.75
$p_{\Sigma^+}p$	6.46
$p_{\Sigma^+}p_{\Sigma^+}$	0.14
$p_\Lambda p_{\Sigma^+}$	0.65
õр	1.52
$\tilde{p}p_{\Lambda}$	0.15
$\widetilde{p}p_{\Sigma^+}$	0.07
p̃p ̃	0.01

Decomposition of the p- Λ correlation function Π

$$\begin{split} \{p\Lambda\} &= p\Lambda + p\Lambda_{\Xi^-} + p\Lambda_{\Xi^0} + p\Lambda_{\Sigma^0} + p_\Lambda\Lambda + p_\Lambda\Lambda_{\Xi^-} + p_\Lambda\Lambda_{\Xi^0} + p_\Lambda\Lambda_{\Sigma^0} \\ &+ p_{\Sigma^+}\Lambda + p_{\Sigma^+}\Lambda_{\Xi^-} + p_{\Sigma^+}\Lambda_{\Xi^0} + p_{\Sigma^+}\Lambda_{\Sigma^0} + \tilde{p}\Lambda + \tilde{p}\Lambda_{\Xi^-} + \tilde{p}\Lambda_{\Xi^0} + \tilde{p}\Lambda_{\Sigma^0} \\ &+ p\tilde{\Lambda} + p_\Lambda\tilde{\Lambda} + p_{\Sigma^+}\tilde{\Lambda} + \tilde{p}\tilde{\Lambda}. \end{split}$$

- Purity from fits to the invariant mass distribution
- Feed-down fractions from MC template fits to the cosα distribution

р–Л		р–Л		
Pair	λ[%]	Pair	λ [%]	
рΛ	52.42	pΛ	0.53	
$p\Lambda_{\Xi^-}$	6.94	$\tilde{p}\Lambda_{\Xi^-}$	0.07	
$p\Lambda_{\Xi^0}$	6.94	$\tilde{p}\Lambda_{\Xi^0}$	0.07	
$\mathrm{p}\Lambda_{\Sigma^0}$	17.47	$\tilde{p}\Lambda_{\Sigma^0}$	0.18	
$p_\Lambda\Lambda$	5.25	$p\tilde{\Lambda}$	2.95	
$p_\Lambda\Lambda_{\Xi^-}$	0.69	$p_{\Lambda}\tilde{\Lambda}$	0.30	
$p_\Lambda\Lambda_{\Xi^0}$	0.69	$p_{\Sigma^+} ilde\Lambda$	0.13	
$p_\Lambda\Lambda_{\Sigma^0}$	1.75	$\tilde{p}\tilde{\Lambda}$	0.03	
$p_{\Sigma^+}\Lambda$	2.25			
$p_{\Sigma^+}\Lambda_{\Xi^-}$	0.30			
$p_{\Sigma^+}\Lambda_{\Xi^0}$	0.30			
$p_{\Sigma^+}\Lambda_{\Sigma^0}$	0.75			

Decomposition of the Λ - Λ correlation function Π

$$\begin{split} \{\Lambda\Lambda\} &= \Lambda\Lambda + \Lambda\Lambda_{\Sigma^0} + \Lambda_{\Sigma^0}\Lambda_{\Sigma^0} + \Lambda\Lambda_{\Xi^0} + \Lambda_{\Xi^0}\Lambda_{\Xi^0} + \Lambda\Lambda_{\Xi^-} \\ &+ \Lambda_{\Xi^-}\Lambda_{\Xi^-} + \Lambda_{\Sigma^0}\Lambda_{\Xi^0} + \Lambda_{\Sigma^0}\Lambda_{\Xi^-} + \Lambda_{\Xi^0}\Lambda_{\Xi^-} \\ &+ \tilde{\Lambda}\Lambda + \tilde{\Lambda}\Lambda_{\Sigma^0} + \tilde{\Lambda}\Lambda_{\Xi^-} + \tilde{\Lambda}\Lambda_{\Xi^0} + \tilde{\Lambda}\tilde{\Lambda}. \end{split}$$

Lambda properties obtained from the Λ purity and the cos α template fits

Λ – Λ		Λ – Λ	
Pair	λ[%]	Pair	λ[%]
ΛΛ	36.54	ÃΛ	4.11
$\Lambda\Lambda_{\Sigma^0}$	24.36	$ ilde{\Lambda}\Lambda_{\Sigma^0}$	1.37
$\Lambda_{\Sigma^0}\Lambda_{\Sigma^0}$	4.06	$ ilde{\Lambda} \Lambda_{\Xi^0}$	0.54
$\Lambda\Lambda_{\Xi^0}$	9.67	$ ilde{\Lambda}\Lambda_{\Xi^-}$	0.54
$\Lambda_{\Xi^0}\Lambda_{\Xi^0}$	0.64	$\tilde{\Lambda}\tilde{\Lambda}$	0.12
$\Lambda\Lambda_{\Xi^-}$	9.67		
$\Lambda_{\Xi^-}\Lambda_{\Xi^-}$	0.64		
$\Lambda_{\!\Sigma^0}\Lambda_{\Xi^0}$	3.22		
$\Lambda_{\Sigma^0}\Lambda_{\Xi^-}$	3.22		
$\Lambda_{\Xi^0}\Lambda_{\Xi^-}$	1.28		

Decomposition of the p- Ξ correlation function Π

$$\begin{split} \{p\Xi^-\} &= p\Xi^- + p\Xi^-_{\Xi^-(1530)} + p\Xi^-_{\Xi^0(1530)} + p\Xi^-_{\Omega} + p_{\Lambda}\Xi^- + p_{\Lambda}\Xi^-_{\Xi^-(1530)} \\ &+ p_{\Lambda}\Xi^-_{\Xi^0(1530)} + p_{\Lambda}\Xi^-_{\Omega} + p_{\Sigma^+}\Xi^- + p_{\Sigma^+}\Xi^-_{\Xi^-(1530)} + p_{\Sigma^+}\Xi^-_{\Xi^0(1530)} + p_{\Sigma^+}\Xi^-_{\Omega} \\ &+ \tilde{p}\Xi^- + \tilde{p}\Xi^-_{\Xi^-(1530)} + \tilde{p}\Xi^-_{\Xi^0(1530)} + \tilde{p}\Xi^-_{\Omega} + p\tilde{\Xi^-} + p_{\Lambda}\tilde{\Xi^-} + p_{\Sigma^+}\tilde{\Xi^-} + \tilde{p}\tilde{\Xi^-}. \end{split}$$

Feeding from

- Ω (BR very small)
- $\Xi^{0}(1530)$ and $\Xi^{-}(1530)$
 - Isospin partners: assume to be produced in the same amount
 - ∑(1530)/Ξ⁻ = 0.32
 (https://doi.org/10.1140/epjc/s10052-014-3191-x)
 - BR($\Xi^{0}(1530) \rightarrow \Xi^{-}$) = 2/3
 - BR(Ξ -(1530) \rightarrow Ξ -) = 1/3

p–Ξ		р–Ξ	
Pair	λ [%]	Pair	λ[%]
$p\Xi^-$	52.40	$\tilde{p}\Xi^{-}$	0.53
$p\Xi_{\Xi^{-}(1530)}^{-}$	8.32	$\tilde{p}\Xi_{\Xi^{-}(1530)}^{-}$	0.08
$p\Xi_{\Xi^{0}(1530)}^{-}$	16.65	$\tilde{p}\Xi_{\Xi^{0}(1530)}^{-}$	0.17
$p\Xi_{\Omega}^{-}$	0.67	$\tilde{p}\Xi_{\Omega}^{-}$	0.01
$p_{\Lambda}\Xi^{-}$	5.25	$p\tilde{\Xi}^{-}$	8.67
$p_{\Lambda} \Xi^{-}_{\Xi^{-}(1530)}$	0.83	$p_{\Lambda} \Xi^{-}$	0.87
$p_{\Lambda} \Xi_{\Xi^0(1530)}^-$	1.67	$p_{\Sigma^+} \widetilde{\Xi^-}$	2.25
$p_{\Lambda}\Xi_{\Omega}^{-}$	0.07	p̃Ξ̃−	0.09
$p_{\Sigma^+} \Xi^-$	2.25		
$p_{\Sigma^+}\Xi^{\Xi^-(1530)}$	0.36		
$p_{\Sigma^+} \Xi^{\Xi^0(1530)}$	0.71		
$p_{\Sigma^+} \Xi_{\Omega}^-$	0.03		

pp@13 TeV

Particle	# baryons
р	113.7 x 10 ⁶
p	97.4 x 10 ⁶
Λ	22.3 x 10 ⁶
$\bar{\Lambda}$	21.0 x 10 ⁶
Ξ-	509 x 10 ³
Ξ^+	527 x 10 ³

Pair	# of pairs k* < 200 MeV/c
р — р	190 x 10 ³
$\overline{p}-\overline{p}$	140 x 10 ³
$p-\Lambda$	62 x 10 ³
$\overline{p}-\overline{\Lambda}$	49 x 10 ³
$\Lambda - \Lambda$	5659
$\bar{\Lambda}-\bar{\Lambda}$	5243
$\mathbf{p}-\Xi^-$	407
$\overline{p}-\Xi^+$	364

Particle	Candidates
р	155 x 10 ⁶
\bar{p}	133 x 10 ⁶
Λ	26 x 10 ⁶
$\overline{\Lambda}$	24 x 10 ⁶
Ξ	0.9 x 10 ⁶
Ξ	0.9 x 10 ⁶

Combinatio ns	Pairs (k*< 200 MeV/c)
p - p	517 x 10 ³
$\bar{p} - \bar{p}$	370 x 10 ³
$p - \Lambda$	127 x 10 ³
$\bar{p}-\bar{\Lambda}$	62 x 10 ³
$\Lambda - \Lambda$	13 x 10 ³
$\overline{\Lambda}-\overline{\Lambda}$	12 x 10 ³
$p-\Xi$	1.8 x 10 ³

1.3 x 10³

P-Pb @ 5.02 TeV

 $\bar{p}-\bar{\Xi}$

Single particle potentials from Lattice

20

U(k) [MeV]

- NS environment ⇒ Pure Neutron
 Matter
- Tested HAL-QCD potential in vacuum with ALICE ⇒ Brueckner-Hartree-Fock many-body calculations ⇒ U_Y single-particle potential of hyperons in nucleonic matter
- At saturation density in PNM:

U_{E-} slightly repulsive

20

HAL-QCD Collaboration, arXiv:1809.08932 (2018)

Recent Constraints from Gravitational Waves not constraining really very much so far...

B. P. Abbott et al. (LIGO Scienti c Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017).

Nuclear EoS including 2N and 3N interactions are consistent with these constraints

Y. Lim, J.W. Holt Phys.Rev.Lett. 121 (2018) no.6, 062701

Valentina Mantovani Sarti (TUM Physics Department – E62)

Theoretical $p-\Xi^-$ Correlation function

• Comparison HAL-QCD/χEFT from recent work by Haidenbauer and Meissner (arxiv:1810.04883)