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Outline
• LS,US,CI, CD Correlation Functions 
• General Balance Function (GBF) 
• Shear Viscosity w/ pT correlations
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Six Reasons to Measure General Balance Functions

• Understand/Probe 
• Two-stage charge production model 
• Collision dynamics, e.g., radial flow
• Hadro-chemistry - Charge/Strangeness/Baryon/Resonance production 

• Background/Support for other studies 
• Search for CME/CMW effects:  

• BF -> Better system expansion models 
• More reliable calculations of charge conservation backgrounds in 

CME searches. 
• Search for DCC production 

• Differential correlators - neutral and charge kaons 
• Studies of (higher-moments) net charge/baryon fluctuations.
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Why Measure General Balance Functions?



C.A.P.

Two-wave Production

�3

Why Measure General Balance Functions?

Pratt PRL. 108, 212301 
(2012)

K±
π± 

Two-wave quark production model:
• π± : predominantly produced at late stage
• K± : predominantly produced at early stage
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Quark Production vs. Time

• Strong late stage contribution
• Hadronization part narrower
• Narrows with centrality

• Weak late stage contribution
• Weak centrality 

dependence.

Bass, Danielewicz, Pratt PRL. 85, 2689 (2000)

Bozek PLB 609 (2005) 247–251

Kapusta, Plumberg PRC 97, 014906 (2018)

Pratt, Cheng PRC 68, 014907 (2003)

Correlations: Coordinate Space Correlations:Momentum

Bα ,β(Δη ,Δφ)=
dNβ

dη
Rα ,β
(CD)(Δη ,Δφ)

Investigate if BFs for π±, K±, …, evolve differently with centrality at LHC & RHIC (BES)
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Hadro-chemistry
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Why Measure General Balance Functions?

Correlations: Coordinate Space Correlations:Momentum

A tool for studying the chemical evolution of 
the quark-gluon plasma
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the definition of g in Eq. (4),

�
Z

d⌘1gab(⌘1, ⌘2) = �
X

i 6=j

qj,a�(⌘2 � ⌘j)qi,b (6)

=
X

j

qj,aqj,b�(⌘2 � ⌘j) (7)

= �ab(⌘2) ⌘
X

↵

hn↵(⌘2)iq↵,aq↵,b.

The first step used charge conservation,
P

i
qi = 0. The average number of particles of a given species ↵ within d⌘ is

hn↵(⌘)id⌘. Assuming instantaneous hadronization, in order to satisfy the sum rule of Eq. (6), the charge correlation
immediately after hadronization must be:

gab(⌘1, ⌘2) = g
(QGP)
ab

(⌘1, ⌘2) + g
(had)
ab

(⌘1, ⌘2), (8)

g
(had)
ab

(⌘1, ⌘2) = �
h
�
(had)
ab

(⌘1)� �
(QGP)
ab

(⌘1)
i
�(⌘1 � ⌘2),

�
(had)
ab

(⌘) =
X

↵2had

q↵,aq↵,bhn↵(⌘)i

�
(QGP)
ab

(⌘) =
X

↵2QGP

q↵,aq↵,bhn↵(⌘)i,

where g
(QGP) describes the correlations both immediately before and immediately after hadronization, but neglects

the hadronization component created at ⌘1 = ⌘2. The sums over ↵ cover the species for each state, i.e., over partonic
species for the QGP state and over hadronic species for the hadronic state. The value �ab, when multiplied by the
delta function, represents the charge-charge correlation that would ensue from independent particles, i.e., when the
only correlations come from a particle with itself. Here the values hn↵i are the densities per unit ⌘ of the species ↵, so

if one measures the final-state yields �(had)
ab

can be considered as known. The values of �ab can also be extracted from

a one-body treatment such as hydrodynamics. The matrix �
(QGP)
ab

is diagonal in a QGP if the charges refer to the

net number of up, down and strange quarks. In contrast, hadrons have multiple charges and �
(had)
ab

has o↵-diagonal
elements. Since hadronization is sudden, but not instantaneous, one would expect to replace the delta function with
some function of finite but narrow width, normalized to unity.

Our next goal is to determine the balance function for any hadronic species just after hadronization, given gab in the
QGP phase. Eq. (8) describes how to extract gab just after hadronization. However, once there are multiple charges
spread across a variety of species, it is not easy to understand how the correlation functions, gab(⌘1, ⌘2), determine
the balance functions, B↵�(⌘1|⌘2). Here, a and b refer to any conserved charges, while ↵ and � refer to the charge
carried by a specific species, where the particle and anti-particles of each species are denoted by ↵ and ↵̄,

B↵�(⌘1|⌘2) =
h[n↵(⌘1)� n↵̄(⌘1)][n�(⌘2)� n

�̄
(⌘2)]i

hn�(⌘2)i+ hn
�̄
(⌘2)i

(9)

=
g↵�(⌘1, ⌘2)

hn�(⌘2)i+ hn
�̄
(⌘2)i

.

Here, n↵ is the density (number per unit ⌘) of particles of species ↵. Thus, g↵� is the correlation of the e↵ective
charge defined by the number of a specific species minus the number of its antiparticle. With this definition, one can
see that

g
↵�̄

= �g↵,� , g↵̄� = �g↵� , g
↵̄�̄

= g↵� , (10)

B
↵�̄

= �B
↵�̄

, B↵̄,� = �B↵� , B
↵̄�̄

= B↵� .

As an example, one can consider the proton-K� balance function. In this example, the index ↵ would refer to protons
and � would refer to negative kaons. The corresponding charge correlation function would be

gpK�(⌘1, ⌘2) = h[np(⌘1)� np̄(⌘1)][nK�(⌘2)� nK+(⌘2)]i. (11)

The su�xes ↵ and � can also refer to a subset of species, with ↵̄ and �̄ referring to the equivalent subset of
antiparticles. For instance, ↵ could refer to the set of all positive particles, while � could refer to the set of all
antiparticles. Switching the indices leads to the relations:

g↵� = g�↵, B↵�n� = B�↵n↵. (12)
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Bα ,β(Δη ,Δφ)=
dNβ

dη
Rα ,β
(CD)(Δη ,Δφ)

Longitudinal & Radial Expansion 
Hadronization

a, b: net charge, strangeness, baryon

Scott Pratt, Phys. Rev. C 85, 014904
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Determining the balance functions for arbitrary species requires making the jump from gab to g↵� . There are three
conserved charges, which we will consider to be the net numbers of up, down and strange quarks. Although one could
have equivalently used baryon number, electric charge and strangeness, the quark numbers are more convenient since
one does not expect any o↵-diagonal elements to gab in this basis for the QGP. For the species-labeled correlations,
g↵� , there are many more possibilities in the hadronic state. Even for the final state, one might wish to consider
charged pions, charged kaons, protons or lambdas. Neutral kaons must also be taken into account for absorbing
strangeness, but because they oscillate into Ks and Kl, cannot be easily used for balance functions. Since g↵� has
more elements than gab, additional assumptions are required if g↵� is to be determined from gab.

Observing a hadronic species ↵ at position ⌘1 infers one has observed the three charges q↵,a, which is the number
of up, down and strange quarks in the resonance ↵. The correlation gab(⌘1, ⌘2) should then provide the probability of
finding the balancing charges at position ⌘2. In order to deterine g↵� one then needs a model to determine how an
extra charge qb at position ⌘2 influences the probability of finding a hadronic species � at the same position.

By assuming that the local distribution of hadrons is determined by a thermal distribution constrained by the
local charge density, one can determine g↵� from gab. To show this, we express the two particle correlation as being
determined by a grand canonical ensemble with Lagrange multipliers applied to constrain reproduction of the average
two-particle correlation function, i.e.,

hABi = 1

Z
Tr

(
ABe

�
R
d⌘H0/T (⌘) exp

"Z
d⌘1d⌘2

X

ab

⇢a(⌘1)µab(⌘1, ⌘2)⇢b(⌘2)

#)
, (13)

Z = Tr

(
e
�

R
d⌘H0/T (⌘) exp

"Z
d⌘1d⌘2

X

ab

⇢a(⌘1)µab(⌘1, ⌘2)⇢b(⌘2)

#)
.

Here, H0 is the Hamiltonian or relevant free energy density, T is the temperature, and µa,b(⌘1, ⌘2) plays the role of a
Lagrange multiplier chosen to enforce that gab(⌘1, ⌘2) is reproduced. The strategy will be first to find µab in terms of
gab, then to use µab to determine g↵� . The correlation function gab(⌘1, ⌘2) is found by replacing the operators A and
B above with

A = ⇢a(⌘1) =
X

↵

n↵(⌘1)q↵,a, B = ⇢b(⌘2) =
X

�

n�(⌘2)q�,b, (14)

where ↵ and � are summed over all hadronic species. By assuming that the weighting is proportional to an exponential
of the constraint (fixing gab), this is essentially a thermal ansatz.

Since the correlation would be zero if not for µ, we can expand the expression for small µ and find:

gab(⌘1, ⌘2) =
X

↵�

hn↵(⌘1)iq↵,aq�,bhn�(⌘2)i exp
(
X

cd

q↵,cµcd(⌘1, ⌘2)q�,d

)
(15)

⇡
X

↵�cd

hn↵(⌘1)iq↵,aq↵,cµcd(⌘1, ⌘2)q�,dq�,bhn�(⌘2)i,

=
X

cd

�ac(⌘1)µcd(⌘1, ⌘2)�db(⌘2),

where � was defined in Eq. (6). The assumption of small µ is warranted given that charge-conservation correlations
are small (at least for central collisions). Inverting the equation, one can then find µab in terms of gab,

µab(⌘1, ⌘2) =
X

cd

�
(�1)
ac

(⌘1)gcd(⌘1, ⌘2)�
(�1)
db

(⌘2). (16)

One can now find g↵� by inserting

A = n↵(⌘1)� n↵̄(⌘1), B = n�(⌘2)� n
�̄
(⌘2), (17)

into Eq. (13). Here n↵̄ is the density of the anti-particles to ↵. Again, assuming equal numbers of particles and
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α, β : particle species (pion, kaon, etc)
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antiparticles, hn↵i = hn↵̄i, and assuming that µab is small,

g↵�(⌘1, ⌘2) =
⌦
[n↵(⌘1)� n↵̄(⌘1)]

⇥
n�(⌘2)� n

�̄
(⌘2)

⇤↵
(18)

= hn↵(⌘1)ihn�(⌘2)i exp
(
X

ab

q↵,aµab(⌘1, ⌘2)q�,b

)
+ hn↵̄(⌘1)ihn�̄

(⌘2)i exp
(
X

ab

q↵,aµab(⌘1, ⌘2)q�,b

)

�hn↵(⌘1)ihn�̄
(⌘2)i exp

(
�
X

ab

q↵,aµab(⌘1, ⌘2)q�,b

)
� hn↵̄(⌘1)ihn�(⌘2)i exp

(
�
X

ab

q↵,aµab(⌘1, ⌘2)q�,b

)

' 4hn↵(⌘1)iq↵,aµab(⌘1, ⌘2)q�,bhn�(⌘2)i.

From Eq. (9), one then finds an expression for the balance function,

B↵�(⌘1|⌘2) = 2
X

ab

hn↵(⌘1)iq↵,aµab(⌘1, ⌘2)q�,b (19)

= 2
X

abcd

hn↵(⌘1)iq↵,a�(�1)
ac

(⌘1)gcd(⌘1, ⌘2)�
(�1)
db

(⌘2)q�,b.

One test of this result is to see whether integrating the balance function over all ⌘1, summing over all ↵, and weighting
with q↵,a, one should get the net amount of charge a found in other particles due to the condition of having observed
a particle of species � at position ⌘2. Performing these operations from the expression for B in Eq. (19),

X

↵

Z
d⌘1 q↵,aB↵�(⌘1|⌘2) = 2

Z
d⌘1

X

↵bcd

q↵,ahn↵(⌘1)iq↵,b�(�1)
bc

(⌘1)gcd(⌘1, ⌘2)�
(�1)
db

(⌘2)q�,b (20)

= 2

Z
d⌘1 �ab(⌘1)�

(�1)
bc

(⌘1)gcd(⌘1, ⌘2)�
(�1)
db

(⌘2)q�,b

=

Z
d⌘1 gac(⌘1, ⌘2)�

(�1)
cb

(⌘2)q�,b

= �2
X

cd

�ac(⌘2)�
(�1)
cd

(⌘2)q�,d

= �2q�,a.

The second-to-last step used the sum rule for integrating g in Eq. (6). The factor of two comes from the fact that
the sum over all species, ↵, double-counted the contributions. For instance, the term for which ↵ = ⇡

+ also includes
the contribution from ⇡

�, and the term for ↵ = ⇡
� also includes the contribution from the ⇡

+.

CALCULATING WEIGHTS FOR BOTH COMPONENTS FOR ALL HADRONIC SPECIES

From Eq. (8), one expects two components to the charge correlation gab(⌘1, ⌘2). Assuming a boost-invariant system,
one can assume a dependence on �⌘ = ⌘1 � ⌘2, rather than on ⌘1 and ⌘2 individually. This expectation inspires one
to write the balance function for all species B↵�(�⌘) in terms of two components,

B↵�(�⌘) = w
(QGP)
↵�

b
(QGP)(�⌘) + w

(had)
↵�

b
(had)(�⌘), (21)

where b
(QGP) and b

(had) are both normalized so that
R
d�⌘b(�⌘) = 1.

The weights, w(QGP) and w
(had), can be determined from the charge correlations, which in turn depend on the

matrices �ab. From Eq. (8),

� gab(�⌘) = �
(QGP)
ab

b
(QGP)(�⌘) +

h
�
(had)
ab

� �
(QGP)
ab

i
b
(had)(�⌘). (22)

Here, the delta function in Eq. (8) was replaced by a Gaussian of finite width, where the width is determined by

the charge di↵usion between hadronization and breakup. The correlation before hadronization, g(QGP)
ab

, should be
diagonal if quarks are good quasi-particles,

�
(QGP)
ab

= hna + nāi�ab, (23)
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)

' 4hn↵(⌘1)iq↵,aµab(⌘1, ⌘2)q�,bhn�(⌘2)i.

From Eq. (9), one then finds an expression for the balance function,

B↵�(⌘1|⌘2) = 2
X

ab

hn↵(⌘1)iq↵,aµab(⌘1, ⌘2)q�,b (19)

= 2
X

abcd

hn↵(⌘1)iq↵,a�(�1)
ac

(⌘1)gcd(⌘1, ⌘2)�
(�1)
db

(⌘2)q�,b.

One test of this result is to see whether integrating the balance function over all ⌘1, summing over all ↵, and weighting
with q↵,a, one should get the net amount of charge a found in other particles due to the condition of having observed
a particle of species � at position ⌘2. Performing these operations from the expression for B in Eq. (19),

X

↵

Z
d⌘1 q↵,aB↵�(⌘1|⌘2) = 2

Z
d⌘1

X

↵bcd

q↵,ahn↵(⌘1)iq↵,b�(�1)
bc

(⌘1)gcd(⌘1, ⌘2)�
(�1)
db

(⌘2)q�,b (20)

= 2

Z
d⌘1 �ab(⌘1)�

(�1)
bc

(⌘1)gcd(⌘1, ⌘2)�
(�1)
db

(⌘2)q�,b

=

Z
d⌘1 gac(⌘1, ⌘2)�

(�1)
cb

(⌘2)q�,b

= �2
X

cd

�ac(⌘2)�
(�1)
cd

(⌘2)q�,d

= �2q�,a.

The second-to-last step used the sum rule for integrating g in Eq. (6). The factor of two comes from the fact that
the sum over all species, ↵, double-counted the contributions. For instance, the term for which ↵ = ⇡

+ also includes
the contribution from ⇡

�, and the term for ↵ = ⇡
� also includes the contribution from the ⇡

+.

CALCULATING WEIGHTS FOR BOTH COMPONENTS FOR ALL HADRONIC SPECIES

From Eq. (8), one expects two components to the charge correlation gab(⌘1, ⌘2). Assuming a boost-invariant system,
one can assume a dependence on �⌘ = ⌘1 � ⌘2, rather than on ⌘1 and ⌘2 individually. This expectation inspires one
to write the balance function for all species B↵�(�⌘) in terms of two components,

B↵�(�⌘) = w
(QGP)
↵�

b
(QGP)(�⌘) + w

(had)
↵�

b
(had)(�⌘), (21)

where b
(QGP) and b

(had) are both normalized so that
R
d�⌘b(�⌘) = 1.

The weights, w(QGP) and w
(had), can be determined from the charge correlations, which in turn depend on the

matrices �ab. From Eq. (8),

� gab(�⌘) = �
(QGP)
ab

b
(QGP)(�⌘) +

h
�
(had)
ab

� �
(QGP)
ab

i
b
(had)(�⌘). (22)

Here, the delta function in Eq. (8) was replaced by a Gaussian of finite width, where the width is determined by

the charge di↵usion between hadronization and breakup. The correlation before hadronization, g(QGP)
ab

, should be
diagonal if quarks are good quasi-particles,

�
(QGP)
ab

= hna + nāi�ab, (23)

5

Determining the balance functions for arbitrary species requires making the jump from gab to g↵� . There are three
conserved charges, which we will consider to be the net numbers of up, down and strange quarks. Although one could
have equivalently used baryon number, electric charge and strangeness, the quark numbers are more convenient since
one does not expect any o↵-diagonal elements to gab in this basis for the QGP. For the species-labeled correlations,
g↵� , there are many more possibilities in the hadronic state. Even for the final state, one might wish to consider
charged pions, charged kaons, protons or lambdas. Neutral kaons must also be taken into account for absorbing
strangeness, but because they oscillate into Ks and Kl, cannot be easily used for balance functions. Since g↵� has
more elements than gab, additional assumptions are required if g↵� is to be determined from gab.

Observing a hadronic species ↵ at position ⌘1 infers one has observed the three charges q↵,a, which is the number
of up, down and strange quarks in the resonance ↵. The correlation gab(⌘1, ⌘2) should then provide the probability of
finding the balancing charges at position ⌘2. In order to deterine g↵� one then needs a model to determine how an
extra charge qb at position ⌘2 influences the probability of finding a hadronic species � at the same position.

By assuming that the local distribution of hadrons is determined by a thermal distribution constrained by the
local charge density, one can determine g↵� from gab. To show this, we express the two particle correlation as being
determined by a grand canonical ensemble with Lagrange multipliers applied to constrain reproduction of the average
two-particle correlation function, i.e.,

hABi = 1

Z
Tr

(
ABe

�
R
d⌘H0/T (⌘) exp

"Z
d⌘1d⌘2

X

ab

⇢a(⌘1)µab(⌘1, ⌘2)⇢b(⌘2)

#)
, (13)

Z = Tr

(
e
�

R
d⌘H0/T (⌘) exp

"Z
d⌘1d⌘2

X

ab

⇢a(⌘1)µab(⌘1, ⌘2)⇢b(⌘2)

#)
.

Here, H0 is the Hamiltonian or relevant free energy density, T is the temperature, and µa,b(⌘1, ⌘2) plays the role of a
Lagrange multiplier chosen to enforce that gab(⌘1, ⌘2) is reproduced. The strategy will be first to find µab in terms of
gab, then to use µab to determine g↵� . The correlation function gab(⌘1, ⌘2) is found by replacing the operators A and
B above with

A = ⇢a(⌘1) =
X

↵

n↵(⌘1)q↵,a, B = ⇢b(⌘2) =
X

�

n�(⌘2)q�,b, (14)

where ↵ and � are summed over all hadronic species. By assuming that the weighting is proportional to an exponential
of the constraint (fixing gab), this is essentially a thermal ansatz.

Since the correlation would be zero if not for µ, we can expand the expression for small µ and find:

gab(⌘1, ⌘2) =
X

↵�

hn↵(⌘1)iq↵,aq�,bhn�(⌘2)i exp
(
X

cd

q↵,cµcd(⌘1, ⌘2)q�,d

)
(15)

⇡
X

↵�cd

hn↵(⌘1)iq↵,aq↵,cµcd(⌘1, ⌘2)q�,dq�,bhn�(⌘2)i,

=
X

cd

�ac(⌘1)µcd(⌘1, ⌘2)�db(⌘2),

where � was defined in Eq. (6). The assumption of small µ is warranted given that charge-conservation correlations
are small (at least for central collisions). Inverting the equation, one can then find µab in terms of gab,

µab(⌘1, ⌘2) =
X

cd

�
(�1)
ac

(⌘1)gcd(⌘1, ⌘2)�
(�1)
db

(⌘2). (16)

One can now find g↵� by inserting

A = n↵(⌘1)� n↵̄(⌘1), B = n�(⌘2)� n
�̄
(⌘2), (17)

into Eq. (13). Here n↵̄ is the density of the anti-particles to ↵. Again, assuming equal numbers of particles and
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Support for net-charge (baryon) fluctuation studies

• E-By-E fluctuations of net charge/baryons/strangeness  probe properties (phase structure) of QCD 
matter. 

• LHC: Test lattice QCD predictions at μB = 0; If close to 2nd-order phase transition for vanishing quark 
masses → signs of criticality? 

• RHIC/BES: Search for critical point. 
• Measure susceptibilities 

�5

Why Measure General Balance Functions?

A. Bazavov et al. PRD 85 (2012) 054503 B. Friman, et al. EPJC 71 (2011) 1694, 

χn
B =

∂n P /T 4( )
∂ µB /T( )n

ΔNB =VT3χ1
B

ΔNB − ΔNB( )
2
=VT3χ2

B =σ 2

ΔNB − ΔNB( )
3

σ 3 =
VT3χ3

B

VT3χ2
B( )
3/2 = S

ΔNB − ΔNB( )
4

σ 4 −3= VT3χ 4
B

VT3χ2
B( )
2 = k

Caveats: GCE expectations must 
be “corrected” for various 
effects: 
• Charge Conservation 
• Vx  =?= Vp  correspondance  
• Energy-momentum conservation 
• Quantum number conservation 
• Finite system size and lifespan 
• Stopping/Fluctuations



C. Pruneau, WWND, Beaver Creek, 2019.. /25

Definitions

�6

Correlation Functions 

C2 (η1,η2 ) ≡ ρ2 (η1,η2 )− ρ1(η1)ρ1(η2 )

R2(Δη ,Δφ)≡
ρ2(Δη ,Δφ)

ρ1(η1 ,φ1)⊗ρ1(η2 ,φ2)
−1

Densities:
ρ1(
!p1) ≡ ρ1(φ1,η1, pT ,1)

ρ2 (
!p1,
!p2 ) ≡ ρ2 (φ1,η1, pT ,1,φ2,η2, pT ,2 )

2-Cumulant:

Normalized Cumulants:

Transverse Momentum Correlator (1):

Dimensionless pT Correlator:

P2(Δη ,Δφ)=
ΔpTΔpT (Δη ,Δφ)

pT
2

M. Sharma & C.P., PRC 79, 024905 
(2009)

pT

1

N

dN

dpT

hpTi

ΔpTΔpT > 0

ΔpTΔpT < 0

Charged particle pair combinations:

• LS : Like-sign pairs 

• US : Unlike-sign pairs

• CI  : Charge Independent

• CD: Charge Dependent 

O(LS ) = 1
2
O(++ ) +O(−− )( )

O(US ) = 1
2
O(+− ) +O(−+ )( )

O(CI ) = 1
2
O(LS ) +O(US )( )

O(CD ) = 1
2
O(US ) −O(LS )( )

Balance Functions (BF):ΔpTΔpT (Δη ,Δφ)≡
ρ2(
!p1 ,
!p2)ΔpT ,1ΔpT ,2dpT ,1dpT ,2∫
ρ2(Δη ,Δφ)

B(Δη ,Δφ)≡ dN
dη

R2
(CD)(Δη ,Δφ)

Transverse Momentum Correlator (2):

G2(Δη ,Δφ)≡
ρ2(
!p1 ,
!p2)pT ,1pT ,2dpT ,1dpT ,2∫

ρ1(η1 ,φ1)⊗ρ1(η2 ,φ2)
− pT ,1 pT ,2

S. Gavin Phys.Rev.Lett. 97 (2006) 162302
M. Sharma & C.P. et al (STAR), PLB704, 467 (2011)
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The four terms of this equation are part of the expression
of the correlators Rab given in Eqs. (8,11). The integral
B(Y |Y ) can thus be re-written:

B(Y |Y ) =
1

2
{R+−⟨N−⟩ + R+−⟨N+⟩

−R++⟨N+⟩ − R−−⟨N−⟩} (58)

which establishes a relationships between the integral,
B(Y |Y ), of the Balance function, and the correlators
R++, R−−, and R+−.

At RHIC, one observes that ⟨N−⟩ ≈ ⟨N+⟩ = ⟨N⟩/2
near central rapidities in Au+Au collisions [28]. The
above expression simplifies

B(Y |Y ) =
⟨N⟩
4

{2R+− − R++ − R−−}

= −
⟨N⟩
4

νdyn. (59)

The integral, B(Y |Y ), of the balance function, B(∆y|Y ),
is thus indeed proportional to the variance νdyn and the
total multiplicity ⟨N⟩ when ⟨N−⟩ ≈ ⟨N+⟩.

VIII. FINITE RECONSTRUCTION
EFFICIENCY EFFECTS

We consider the effect of finite reconstruction efficiency
on measurements of fluctuations studied as a function
of collision centrality. We assume the centrality is ex-
perimentally determined based on the total multiplicity
of charged particles detected in a reference acceptance,
ΩM whereas the multiplicity fluctuations of interest are
measured in a fiducial acceptance ΩN . We account for
the finite detection efficiency, in a given acceptance, Ωα,
by introducing a detector response function PD(nα|Nα)
expressing the probability of detecting a multiplicity nα

given a produced multiplicity Nα. In general, PD(nα|Nα)
shall account for finite efficiency effects as well as mea-
surements of ghost tracks. We shall calculate, quite gen-
erally, moments, Mk,α, and factorial moments, Fk,α, of
the particle multiplicity distribution defined respectively
as:

Mk,α = ⟨Nk
α⟩ =

1

Nev

∑

Nk
α

Fk,α = ⟨Nα(Nα − 1)(Nα − k)⟩ (60)

=
1

Nev

∑

Nα(Nα − 1) · · · (Nα − k),

where Nev is the number of events studied. The mean
is µα = M1,α and the variance, V = ⟨δN2

α⟩ = M2,α −
M2

1,α. Here we will restrict our calculation to these lowest
moments, but the calculation can easily be generalized to
higher moments.

We shall use lower case letter (e.g. mk,α) to distinguish
measured moments from the intrinsic or actual moment

of the produced particles (i.e. that one wishes to infer)
represented with capital letters (e.g. Mk,α).

We assume that moments of the multiplicity distribu-
tions are measured as a function of the collision centrality
estimated based on the total multiplicity, m, measured in
the reference acceptance. The moments can then be ex-
pressed (neglecting for simplicity the particle type label
α):

mk =
∞
∑

n=0

nkP (n|m), (61)

where the sum is taken over all relevant multiplicities,
and P (n|m) is the probability to measure “n” given the
centrality estimator “m”. We emphasize that both “n”
and “m” are influenced by the finite efficiency of the de-
tector. We in fact seek to extract the intrinsic moments
of the particle production

Mk =
∞
∑

N=0

NkP (N |M), (62)

where P (N |M) is the probability “N” particles are pro-
duced at a given centrality “M”. The measured distribu-
tion P (n|m) can be expressed as a function of the intrin-
sic distribution as follows

P (n|m) =
∑

N,M

PD(n|N)P (N |M)PD(M |m), (63)

with the sum extending over all relevant produced mul-
tiplicities N and M . The factor PD(M |m) corresponds
to the probability of having a produced multiplicity M
given the measured value m. It is evaluated using Bayes
rule:

PD(M |m) =
PD(m|M)P (M)

P (m)
, (64)

where P (M) and P (m) are respectively the probability of
the produced, M, and measured, m, multiplicities. The
measured probability distribution is thus

P (n|m) =
1

P (m)

∑

P (n|N)

×P (N |M)P (m|M)P (M). (65)

Measured moments can be calculated as function of
the intrinsic (produced) moment by inserting the above
expression in (62). Introducing for convenience the func-
tions hs(N) and gs(M) defined as follows:

hs(N) =
∑

n

nsP (n|N) (66)

gs(M) =
∑

N

hs(N)P (N |M) (67)

one finds a general expression for the moments as follows:

⟨mk⟩ =
1

P (m)

∑

M

P (m|M)P (M)gk(M). (68)

Note:
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Measurements by ALICE

• Systems 
• p - p collisions 
• p - Pb collisions 
• Pb - Pb collisions   

• Charged particle tracks (ITS+TPC):   

• Pairs 
• Centrality Determination w/ V0 Detectors 
• Track Quality Criteria:  

• DCAz<3.2 cm, DCAxy<2.4 cm;  
• >70 hits/track;  
• Suppression of electrons with TPC track dE/dx 
• NUE Correction w/ weight technique

�7

sNN = 2.76 TeV

0.2≤ pT ≤2.0;			 η ≤1.0

Δη ≤2.0
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R2(CI) in Pb — Pb @ 2.76 TeV

�8

Correlation Functions
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P. Pujahari, et al., arXiv:1805.04422, Submitted to PRC.



C. Pruneau, WWND, Beaver Creek, 2019.. /25

R2(CD) in Pb — Pb @ 2.76 TeV
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Correlation Functions
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P. Pujahari, et al., arXiv:1805.04422, Submitted to PRC.
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R2CI — Comparison w/ Models
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Correlation Functions
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In Preparation, S. Basu et al.

• 3 models considered reproduce flow modulations (qualitatively)

• Near-side/Away-side shapes challenge models.

• EPOS qualitatively best for this observable.
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R2CD — Comparison w/ Models
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Correlation Functions

EPOS 3.0ALICE DATA UrQMD AMPT

In Preparation, S. Basu et al.

• EPOS: Qualitative Agreement, Insufficient correlation strength 
(corona/core?) 

• UrQMD: No agreement 
• AMPT: Qualitative Agreement, Correlation strength incorrect, no 

centrality evolution
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Lesson: Need to account 
for charge conservation!
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Pb-Pb, p-Pb & pp Collisions
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Unidentified Charged Hadrons BF ALICE Eur. Phys. J. C 76 (2016) 86

◇ 0.2<pT,assoc<pT,trig<2.0 GeV/c 
• Pb-Pb: narrowing towards central collisions  
     -> delayed hadronization (longer system lifetime) 
     -> radial flow 
• p-Pb, pp: narrowing towards large multiplicity 

collisions 

◇2.0<pT,assoc<3.0<pT,trig<4.0 GeV/c & 
3.0<pT,assoc<8.0<pT,trig<15.0 GeV/c  
• Pb-Pb, p-Pb, pp: no multiplicity dependence  
• may indicate different quark production mechanisms  
    (interplay of bulk & jets)

Pb-Pb √sNN = 2.76 TeV 
0.2<pT,assoc<pT,trig<2.0 GeV/c
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Pb-Pb @ 5.02 TeV 
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Unidentified Charged Hadrons BF

0.2<pT trig, pT assoc<2.0 GeV/c

J. Pan, et al.

ALICE measurements of flow 
coefficients and their correlations in 
small (pp and p-Pb) and large (Xe-Xe 

and Pb-Pb) collision systems

Katarina Gajdosova
on behalf of the ALICE Collaboration

Niels Bohr Institute, Copenhagen

Is there collectivity in small collision systems?

If yes, what is its origin?

Near-side Peak Widths

pT dependent BF: 

centrality dependence changes with 
pT range

no narrowing for 1.0<pT trig, pT 
assoc<2.0 GeV/c


No difference between 2.76 & 5.02 TeV
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Associated Charge Yield   — Pb-Pb @ 5.02 TeV
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Unidentified Charged Hadrons BF

Near-side Away-side Total

Balancing Charge Yield (integral of BF):  
Amount of balancing charge within experimental acceptance 
First measurement of balancing charge yields 
pT dependent BF: centrality dependence changes with pT range

J. Pan, et al.

ALICE measurements of flow 
coefficients and their correlations in 
small (pp and p-Pb) and large (Xe-Xe 

and Pb-Pb) collision systems

Katarina Gajdosova
on behalf of the ALICE Collaboration

Niels Bohr Institute, Copenhagen

Is there collectivity in small collision systems?

If yes, what is its origin?
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Charged pion and kaon identification in ALICE
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PID Balance Functions

π± K±

TPC 
0.2<pT, p<0.8 GeV

nσπ<2, 
nσK,p>2, 
nσe>1

nσK<2 
nσπ,p>3 
nσe>1

TOF 
0.8<p, pT<2.0 GeV

nσπ<2, 
nσK,p>2

TPC + TOF 
0.8<p, pT<2.0 GeV

nσK<2 
nσπ,p>3

Purity >96% >96%

ALICE Int.J.Mod.Phys. A29 (2014) 1430044

J. Pan, et al.

ALICE measurements of flow 
coefficients and their correlations in 
small (pp and p-Pb) and large (Xe-Xe 

and Pb-Pb) collision systems

Katarina Gajdosova
on behalf of the ALICE Collaboration

Niels Bohr Institute, Copenhagen

Is there collectivity in small collision systems?

If yes, what is its origin?

Cuts and Purity
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Pion, Kaon BF:  Pb — Pb @ 2.76 TeV
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PID Balance Functions

π±

K±

J. Pan, et al.

ALICE measurements of flow 
coefficients and their correlations in 
small (pp and p-Pb) and large (Xe-Xe 

and Pb-Pb) collision systems

Katarina Gajdosova
on behalf of the ALICE Collaboration

Niels Bohr Institute, Copenhagen

Is there collectivity in small collision systems?

If yes, what is its origin?

π± : Considerable shape dependence on collision centrality

K± : Modest shape dependence on collision centrality
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Pion, Kaon— Projections
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π±

K±

Balance Functions J. Pan, et al.

ALICE measurements of flow 
coefficients and their correlations in 
small (pp and p-Pb) and large (Xe-Xe 

and Pb-Pb) collision systems

Katarina Gajdosova
on behalf of the ALICE Collaboration

Niels Bohr Institute, Copenhagen

Is there collectivity in small collision systems?

If yes, what is its origin?

π± : 

Considerable shape 
dependence on collision 
centrality

K± : 

Modest shape 
dependence on collision 
centrality

• Efficiency corrected

• Absolute normalization

• Can be integrated meaningfully



C. Pruneau, WWND, Beaver Creek, 2019.. /25

Pion, Kaon Balance Functions — Pb-Pb
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Balance Functions J. Pan et al.

ALICE measurements of flow 
coefficients and their correlations in 
small (pp and p-Pb) and large (Xe-Xe 

and Pb-Pb) collision systems

Katarina Gajdosova
on behalf of the ALICE Collaboration

Niels Bohr Institute, Copenhagen

Is there collectivity in small collision systems?

If yes, what is its origin?

BF Widths

Narrowing

Narrowing~invariant

Narrowing

• Longitudinal Widths 
• Pions: Narrowing vs. centrality 
• Kaons: ~Invariant vs. centrality  

• Azimuthal Widths 
• Pions: Narrowing vs. centrality 
• Kaons: Narrowing vs. centrality

• Signature expected (Pratt et al.) for  
• Strong radial flow 
• Delayed hadronization (pions)  
• Two stage charge productionity
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Comparison With STAR Results
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PID Balance Functions

STAR PRC 82, 024905 (2010)

◇ similar trends and magnitudes 
measured by STAR 

◇        In Au-Au @ 200 GeV

0.2<pT<0.6 GeV

◇ π±  width narrowing towards central collisions 
◇ K± no change of width with centrality 
◇ consistent with two-wave model

Vs.
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Hadron, Pion, Kaon Balance Functions — Pb-Pb
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Balance Functions J. Pan, D. Caffari, et al.

ALICE measurements of flow 
coefficients and their correlations in 
small (pp and p-Pb) and large (Xe-Xe 

and Pb-Pb) collision systems

Katarina Gajdosova
on behalf of the ALICE Collaboration

Niels Bohr Institute, Copenhagen

Is there collectivity in small collision systems?

If yes, what is its origin?

h± Kinematical focusing only?

Minor loss?

BF Yields

• Yield vs. centrality is sensitive to … 
• Hadro-chemistry, What particles accompany a pion? A pion? A kaon? etc. 

• Resonances, string fragmentation/melting, etc  
• System expansion dynamics  

• Use to constrain BW models or Hydrodynamic models.
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R2CD, Balance functions (BF), General Balance Function (GBF)
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ALICE Collaboration: Published and In Progress …

h± π± K± p(p) Λ ?

h±

Pb-Pb 2.76 TeV(1,2)

p-p 7 TeV(2)

p-Pb 5.02(2)

Pb-Pb 5.02 TeV(3)

Xe+Xe

π±

Pb-Pb 2.76 TeV(3)

p-p 7 TeV(3)

p-Pb 5.02(3)

Xe-Xe
Pb-Pb (2018)

Pb-Pb 2.76 TeV(4)

Pb-Pb (2018)
Pb-Pb 2.76 TeV(4)

Pb-Pb (2018)
Pb-Pb (2018)

K±
Pb-Pb 2.76 TeV(4)

Pb-Pb (2018)
Pb-Pb 2.76 TeV(3)

Pb-Pb 5.02 TeV(5)

Xe+Xe

Pb-Pb 2.76 TeV(4)

Pb-Pb (2018)
Pb-Pb (2018)

p±
Pb-Pb 2.76 TeV(4)

Pb-Pb (2018)
Pb-Pb 2.76 TeV(4)

Pb-Pb (2018)
Pb-Pb 2.76 TeV(4)

Pb-Pb 5.02 TeV(5)

Pb-Pb (2018)

Pb-Pb 5.02 TeV(6)

Pb-Pb (2018)

Λ Pb-Pb (2018) Pb-Pb (2018) Pb-Pb 5.02 TeV(6)

Pb-Pb (2018)
Pb-Pb 5.02 TeV(6)

Pb-Pb (2018)

Analysis/Publication Status/Opportunities

• Currently: PID Cuts based on dE/dx, TOF 
• Near future: Diff. Identity Method

• Expanded kinematic range, 
• Better statistics 
• OPPORTUNITY FOR “NEW” STUDENTS/

Post-Docs

(1) ALICE, PLB 723, 267 (2013)  
(2) ALICE, Eur. Phys. J. C76, 86 (2016), 1509.07255  
(3) J. Pan, D. Caffarri, QM18 
(4) J. Pan (PhD Thesis) - paper in 2019. 
(5) D. Caffarri - paper in 20192020. 
(6) S. Basu - paper in 2019/2020.
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Momentum Correlator G2
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Correlation PAG V. Gonzales et al.

ALI-PREL-155068
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• Broadening of G2 w/ centrality

• Different than STAR’s

• Implications on viscosity at LHC ?

G2(Δη ,Δφ)≡
ρ2(
!p1 ,
!p2)pT ,1pT ,2dpT ,1dpT ,2∫

ρ1(η1 ,φ1)⊗ρ1(η2 ,φ2)
− pT ,1 pT ,2

S. Gavin Phys.Rev.Lett. 97 (2006) 162302
M. Sharma & C.P. et al (STAR), PLB704, 467 
(2011)
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Summary
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Correlation & Balance Function Measurements

• Charged hadrons BF (Pb-Pb @ 5.02 TeV):  
• pT dependent BF 
• narrowing towards central collisions similar 

to Pb-Pb @ 2.76 TeV  for pT <2.0 GeV/c 
• Balancing Charge Yield consistent with 

narrowing towards central collisions 

• Charged pions & kaons BF (Pb-Pb @ 2.76 TeV):  
• B(Δy): π± narrowing towards central 

collisions similar to h± 
• K± no centrality dependence  
• Similar trends and magnitude to STAR results 

for Au-Au @ 200 GeV  
• Consistent with two-wave production model 
• B(Δφ): both π± and K± narrowing towards 

central collisions 
• Strong radial flow - Tune models 

• From Model Comparisons 
• Models need to account properly for charge 

conservation.

System
√sNN 

(TeV) h± π± K±

Pb-Pb 2.76 ✔ ✔ ✔

Pb-Pb 5.02 ✔

p-Pb 5.02 ✔ ✔

pp 7 ✔ ✔

✔ - published 
✔ - new results



C. Pruneau, WWND, Beaver Creek, 2019.. /25

Identity Method for π, K, p, Λ  identification

• π, K, p identification: 
• Compute probability (weight) of measured dE/dx, 

corresponds to π, K, p, fill histograms for each species 
(statistical identification), 

• Calculate sum of weights (W) instead of multiplicity 
• Calculate moments of W distribution, invert response 

matrix to determine moments <N> and <N(N-1)> 
• Account for misidentification/impurity (and 

efficiency) without lowering efficiency by imposing 
strict selection cuts.
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New Ideas…

w(dE/dx)

Measurements of moments of particle 
multiplicities w/ IM 
• Two particle species:  M. 

Gazdzicki, et al., PRC83 (2011) 
054907;  M. Gazdzicki, EPJC 8, 131 
(1999), nucl-th/9712050.  

• Arbitrary number of species: M. I. 
Gorenstein, PRC84, 024902 (2011). 

• Measurements of higher 
moments: A. Rustamov and M. I. 
Gorenstein, PRC86, 044906 (2012).   

• Measurements of moments in the 
presence of transverse 
momentum-dependent efficiency 
losses: C. A. Pruneau, PRC 96, 
054902 (2017) 

• Differential CFs w/ efficiency 
losses: C. Pruneau,  A. Ohlson, 
arXiv:1806.02264v1, Accepted PRC 

• Nu-Dyn: πK, πp, Kp, ALICE (Mesut 
Arsland), submitted to EPJC, arXiv:
1712.07929

• Essentially an unfolding method
• Applicable to integral and differential correlation functions
• Concept applicable to primary/secondary track unfolding also…

PID Matrix
π-π π-K π-p

K-π K-K K-p

p-π p-K P-p
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Last: a shameless plug… 
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• Correlation observables are all inter-connected …  
• Measure/emphasize different aspects of the physics we seek 

to understand.
www.cambridge.org/9781108416788

For basic intro, see:

Topics Chapters

Classical Statistics 5
Bayesian Statistics 1

Data Reconstruction/
Analysis Methods 2

Correlation Functions 2

Data Correction/Unfolding 1
Basic Monte Carlo 
Techniques 2

~730 pages, ~90$, a very good value…


