

Wayne State University College of Liberal Arts & Sciences Department of Physics and Astronomy

## **General Balance Functions** (and other correlation functions) Winter Workshop Nuclear Dynamics, Beaver Creek, CO

Claude A. Pruneau Wayne State University

#### Outline

- LS,US,CI, CD Correlation Functions
- General Balance Function (GBF)
- Shear Viscosity w/ pT correlations

## Six Reasons to Measure General Balance Functions

- Understand/Probe
  - Two-stage charge production model
  - Collision dynamics, e.g., radial flow
  - Hadro-chemistry Charge/Strangeness/Baryon/Resonance production
- Background/Support for other studies
  - Search for CME/CMW effects:
    - BF -> Better system expansion models
    - More reliable calculations of charge conservation backgrounds in CME searches.
  - Search for DCC production
    - Differential correlators neutral and charge kaons
  - Studies of (higher-moments) net charge/baryon fluctuations.

#### Why Measure General Balance Functions?

**Two-wave Production** 

#### Bass, Danielewicz, Pratt PRL. 85, 2689 (2000) Pratt, Cheng PRC 68, 014907 (2003) Bozek PLB 609 (2005) 247-251 Kapusta, Plumberg PRC 97, 014906 (2018)



- **m**<sup>±</sup> : predominantly produced at late stage ٠
- K<sup>±</sup> : predominantly produced at early stage

Hadronization part narrower

Narrows with centrality

Weak late stage contribution

 Weak centrality dependence.

Investigate if BFs for n<sup>±</sup>, K<sup>±</sup>, ..., evolve differently with centrality at LHC & RHIC (BES)

#### Why Measure General Balance Functions?

## Hadro-chemistry



#### Why Measure General Balance Functions?

## Support for net-charge (baryon) fluctuation studies



- E-By-E fluctuations of net charge/baryons/strangeness probe properties (phase structure) of QCD matter.
- LHC: Test lattice QCD predictions at µ<sub>B</sub> = 0; If close to 2<sup>nd</sup>-order phase transition for vanishing quark masses → signs of criticality?
- RHIC/BES: Search for critical point.
- Measure susceptibilities

$$\chi_n^B = \frac{\partial^n \left( P / T^4 \right)}{\partial \left( \mu_B / T \right)^n}$$

$$\langle \Delta N_B \rangle = VT \chi_1$$

$$\left\langle \left( \Delta N_B - \left\langle \Delta N_B \right\rangle \right)^2 \right\rangle = VT^3 \chi_2^B = \sigma^2$$

$$\left\langle \left( \Delta N_B - \left\langle \Delta N_B \right\rangle \right)^3 \right\rangle / \sigma^3 = \frac{VT^3 \chi_3^B}{\left( VT^3 \chi_2^B \right)^{3/2}} = S$$

$$\left\langle \left( \Delta N_B - \left\langle \Delta N_B \right\rangle \right)^4 \right\rangle / \sigma^4 - 3 = \frac{VT^3 \chi_4^B}{\left( VT^3 \chi_2^B \right)^2} = K$$

 $/ \Lambda \Lambda I \setminus \Lambda T^3 \Lambda B$ 

Caveats: GCE expectations must be "corrected" for various effects:

- Charge Conservation
- V<sub>x</sub> =?= V<sub>p</sub> correspondance
- Energy-momentum conservation
- Quantum number conservation
- Finite system size and lifespan
- Stopping/Fluctuations

## Definitions

#### **Densities:**

 $\rho_1(\vec{p}_1) \equiv \rho_1(\phi_1, \eta_1, p_{T,1})$  $\rho_2(\vec{p}_1, \vec{p}_2) \equiv \rho_2(\phi_1, \eta_1, p_{T,1}, \phi_2, \eta_2, p_{T,2})$ 

### 2-Cumulant:

 $C_2(\eta_1,\eta_2) \equiv \rho_2(\eta_1,\eta_2) - \rho_1(\eta_1)\rho_1(\eta_2)$ 

## **Normalized Cumulants:**

 $R_2(\Delta\eta,\Delta\phi) = \frac{\rho_2(\Delta\eta,\Delta\phi)}{\rho_1(\eta_1,\phi_1) \otimes \rho_1(\eta_2,\phi_2)} - 1$ 

#### Transverse Momentum Correlator (1): M. Sharma & C.P., PRC 79, 024905

(2009)  $\left\langle \Delta p_{T} \Delta p_{T} \right\rangle (\Delta \eta, \Delta \phi) = \frac{\int \rho_{2}(\vec{p}_{1}, \vec{p}_{2}) \Delta p_{T,1} \Delta p_{T,2} dp_{T,1} dp_{T,2}}{\rho_{2}(\Delta n, \Delta \phi)}$ 

# **Dimensionless pT Correlator:** $P_{2}(\Delta \eta, \Delta \phi) = \frac{\left\langle \Delta p_{T} \Delta p_{T} \right\rangle (\Delta \eta, \Delta \phi)}{\left\langle p_{T} \right\rangle^{2}}$ $\Delta p_{T} \Delta p_{T} < 0$

 $\langle p_{\rm T} \rangle$ 

 $p_{\mathrm{T}}$ 

### **Transverse Momentum Correlator (2):**

S. Gavin Phys.Rev.Lett. 97 (2006) 162302 M. Sharma & C.P. et al (STAR), PLB704, 467 (2011)

$$G_{2}(\Delta\eta,\Delta\phi) \equiv \frac{\int \rho_{2}(\vec{p}_{1},\vec{p}_{2})p_{T,1}p_{T,2}dp_{T,1}dp_{T,2}}{\rho_{1}(\eta_{1},\phi_{1})\otimes\rho_{1}(\eta_{2},\phi_{2})} - \langle p_{T,1}\rangle\langle p_{T,2}\rangle$$

## Charged particle pair combinations:

• LS : Like-sign pairs 
$$O^{(LS)} = \frac{1}{2} (O^{(++)} + O^{(--)})$$

CD: Charge Dependent

 $O^{(US)} = \frac{1}{2} \left( O^{(+-)} + O^{(-+)} \right)$  $O^{(CI)} = \frac{1}{2} \left( O^{(LS)} + O^{(US)} \right)$  $O^{(CD)} = \frac{1}{2} \left( O^{(US)} - O^{(LS)} \right)$ 

**Balance Functions (BF):** 

$$B(\Delta\eta,\Delta\phi) \equiv \frac{dN}{d\eta} R_2^{(CD)}(\Delta\eta,\Delta\phi)$$

Note: 
$$B(Y|Y) = \frac{\langle N \rangle}{4} \{2R_{+-} - R_{++} - R_{--}\}$$
  
=  $-\frac{\langle N \rangle}{4} \nu_{dyn}$ .

## **Measurements by ALICE**





Wayne State University

College of Liberal Arts & Sciences Department of Physics and Astronomy

#### P. Pujahari, et al., arXiv:1805.04422, Submitted to PRC.

## $R_2^{(CI)}$ in Pb — Pb @ 2.76 TeV





#### P. Pujahari, et al., arXiv:1805.04422, Submitted to PRC.

## $R_2^{(CD)}$ in Pb — Pb @ 2.76 TeV





## R<sub>2</sub><sup>CI</sup> — Comparison w/ Models



- 3 models considered reproduce flow modulations (qualitatively)
- Near-side/Away-side shapes challenge models.
- EPOS qualitatively best for this observable.

## **R**<sub>2</sub><sup>CD</sup> — Comparison w/ Models



- EPOS: Qualitative Agreement, Insufficient correlation strength (corona/core?)
- UrQMD: No agreement
- AMPT: Qualitative Agreement, Correlation strength incorrect, no centrality evolution

Lesson: Need to account for charge conservation!

## **Unidentified Charged Hadrons BF**

#### ALICE Eur. Phys. J. C 76 (2016) 86

## Pb-Pb, p-Pb & pp Collisions



#### Pb-Pb $\int s_{NN} = 2.76 \text{ TeV}$ 0.2< $p_{T,assoc}$ < $p_{T,trig}$ <2.0 GeV/c





- $\diamond$  0.2< $p_{T,assoc}$ < $p_{T,trig}$ <2.0 GeV/c
- Pb-Pb: narrowing towards central collisions
  - -> delayed hadronization (longer system lifetime)-> radial flow
- p-Pb, pp: narrowing towards large multiplicity collisions
- $\diamond 2.0 < p_{T,assoc} < 3.0 < p_{T,trig} < 4.0 \text{ GeV/c }$  $3.0 < p_{T,assoc} < 8.0 < p_{T,trig} < 15.0 \text{ GeV/c}$
- Pb-Pb, p-Pb, pp: no multiplicity dependence
- may indicate different quark production mechanisms (interplay of bulk & jets)



## **Unidentified Charged Hadrons BF**

J. Pan, et al.





## Pb-Pb @ 5.02 TeV

#### $0.2 < p_{T trig}, p_{T assoc} < 2.0 \text{ GeV/}c$



### **Unidentified Charged Hadrons BF**

J. Pan, et al.



## Associated Charge Yield — Pb-Pb @ 5.02 TeV

#### Near-side Away-side Total ≻<sup>∞0.5</sup>-><sup>m</sup><sup>1.2</sup>[····· ≻≞1.2, Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ ALICE Preliminary **ALICE Preliminary** Pb-Pb, $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$ ALICE Preliminary • $0.2 \le p_{T \text{ trig}}, p_{T \text{ assoc}} < 2.0 \text{ GeV}/c$ $|\Delta \eta| < 1.6$ • $0.2 \le p_{T \text{ trig}}, p_{T \text{ assoc}} < 1.0 \text{ GeV}/c$ $-\pi/2 < \Delta \phi < \pi/2$ • $0.2 \le p_{\text{T trig}}, p_{\text{T assoc}} < 2.0 \text{ GeV/}c$ ■ $0.2 \le p_{T \text{ trig}}, p_{T \text{ assoc}} < 2.0 \text{ GeV}/c$ $|\Delta\eta| < 1.6$ ■ $0.2 \le p_{T \text{ trig}}, p_{T \text{ assoc}} < 1.0 \text{ GeV}/c$ $-\pi/2 < \Delta\phi < 3\pi/2$ $= 0.2 \le p_{T \text{ trig}}, p_{T \text{ assoc}} < 1.0 \text{ GeV/c}$ $= 0.2 \le p_{T \text{ trig}}, 2.0 \text{ GeV/c}$ $= 0.2 \le p_{T \text{ assoc}} < 1.0 \le p_{T \text{ trig}} < 2.0 \text{ GeV/c}$ $= 1.0 \le p_{T \text{ trig}}, p_{T \text{ assoc}} < 2.0 \text{ GeV/c}$ • $0.2 \le p_{\text{T assoc}} < 1.0 \le p_{\text{T trig}} < 2.0 \text{ GeV/}c$ $= 0.2 \le p_{T \text{ assoc}} < 1.0 \le p_{T \text{ trig}} < 2.0 \text{ GeV/}c$ $= 1.0 \le p_{T \text{ trig}}, p_{T \text{ assoc}} < 2.0 \text{ GeV/}c$ • $1.0 \le p_{\text{T trig}}, p_{\text{T assoc}} < 2.0 \text{ GeV/}c$ 0.8 0.3 0.8 l∆ηl < 1.6 $\pi/2 < \Delta \phi < 3\pi/2$ 0.6 0.2 0.6 0.1 0.4 0.4 0.2 0.2 10 20 30 40 50 60 70 80 \_\_\_\_\_\_ 30 40 50 60 70 80 10 20 30 40 50 60 70 Centrality (%) Centrality (%) Centrality (%) ALI-PREL-159200 ALI-PREL-159204 ALI-PREL-159196

Balancing Charge Yield (integral of BF): Amount of balancing charge within experimental acceptance First measurement of balancing charge yields pT dependent BF: centrality dependence changes with pT range

### **PID Balance Functions**

J. Pan, et al.

Quark Matter

ALICE

## Charged pion and kaon identification in ALICE





#### **Cuts and Purity**

|                                                 | π±                                                                 | K±                                                               |
|-------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|
| TPC<br>0.2 <p<sub>T, p&lt;0.8 GeV</p<sub>       | nσ <sub>π</sub> <2,<br>nσ <sub>K,p</sub> >2,<br>nσ <sub>e</sub> >1 | nσ <sub>K</sub> <2<br>nσ <sub>π,p</sub> >3<br>nσ <sub>e</sub> >1 |
| TOF<br>0.8 <p, p<sub="">T&lt;2.0 GeV</p,>       | nσ <sub>π</sub> <2,<br>nσ <sub>K,p</sub> >2                        |                                                                  |
| TPC + TOF<br>0.8 <p, p<sub="">T&lt;2.0 GeV</p,> |                                                                    | nσ <sub>K</sub> <2<br>nσ <sub>π,p</sub> >3                       |
| Purity                                          | >96%                                                               | > <b>96</b> %                                                    |

J. Pan, et al.



ALIC

## Pion, Kaon BF: Pb – Pb @ 2.76 TeV



#### π<sup>±</sup>: Considerable shape dependence on collision centrality



#### K<sup>± :</sup> Modest shape dependence on collision centrality

### **Balance Functions**

J. Pan, et al.



ALICE

## Pion, Kaon – Projections



#### • Efficiency corrected

- Absolute normalization
- Can be integrated meaningfully



•

#### Considerable shape dependence on collision centrality



K<sup>± :</sup> Modest shape dependence on collision centrality

### **Balance Functions**

J. Pan et al.



ALIC

## Pion, Kaon Balance Functions — Pb-Pb

## **BF Widths**



- Longitudinal Widths
  - Pions: Narrowing vs. centrality
  - Kaons: ~Invariant vs. centrality
- Azimuthal Widths
  - Pions: Narrowing vs. centrality
  - Kaons: Narrowing vs. centrality

#### Signature expected (Pratt et al.) for

- Strong radial flow
- Delayed hadronization (pions)
- Two stage charge productionity

#### **PID Balance Functions**

## **Comparison With STAR Results**



- $\circ \pi^{\pm}$  width narrowing towards central collisions
- ♦ K<sup>±</sup> no change of width with centrality
- ◊ consistent with two-wave model

- similar trends and magnitudes measured by STAR
- In Au-Au @ 200 GeV

Vs. STAR

ALIC

### **Balance Functions**

J. Pan, D. Caffari, et al.

## Hadron, Pion, Kaon Balance Functions — Pb-Pb

## **BF Yields**



- Yield vs. centrality is sensitive to ...
  - Hadro-chemistry, What particles accompany a pion? A pion? A kaon? etc.
    - Resonances, string fragmentation/melting, etc
  - System expansion dynamics
    - Use to constrain BW models or Hydrodynamic models.



ALICE

## R<sub>2</sub><sup>CD</sup>, Balance functions (BF), General Balance Function (GBF)

#### Analysis/Publication Status/Opportunities

|    | h±                                                                                                                                | Π±                                                                                                                           | K±                                                                      | <b>p(p)</b>                                                                           | ٨                                             | ? |
|----|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------|---|
| h± | Pb-Pb 2.76 TeV <sup>(1,2)</sup><br>p-p 7 TeV <sup>(2)</sup><br>p-Pb 5.02 <sup>(2)</sup><br>Pb-Pb 5.02 TeV <sup>(3)</sup><br>Xe+Xe |                                                                                                                              |                                                                         |                                                                                       |                                               |   |
| π± |                                                                                                                                   | Pb-Pb 2.76 TeV <sup>(3)</sup><br>p-p 7 TeV <sup>(3)</sup><br>p-Pb 5.02 <sup>(3)</sup><br><b>Xe-Xe</b><br><b>Pb-Pb (2018)</b> | Pb-Pb 2.76 TeV <sup>(4)</sup><br>Pb-Pb (2018)                           | Pb-Pb 2.76 TeV <sup>(4)</sup><br>Pb-Pb (2018)                                         | Pb-Pb (2018)                                  |   |
| K± |                                                                                                                                   | Pb-Pb 2.76 TeV <sup>(4)</sup><br>Pb-Pb (2018)                                                                                | Pb-Pb 2.76 TeV <sup>(3)</sup><br>Pb-Pb 5.02 TeV <sup>(5)</sup><br>Xe+Xe | Pb-Pb 2.76 TeV <sup>(4)</sup><br>Pb-Pb (2018)                                         | Pb-Pb (2018)                                  |   |
| p± |                                                                                                                                   | Pb-Pb 2.76 TeV <sup>(4)</sup><br>Pb-Pb (2018)                                                                                | Pb-Pb 2.76 TeV <sup>(4)</sup><br>Pb-Pb (2018)                           | Pb-Pb 2.76 TeV <sup>(4)</sup><br>Pb-Pb 5.02 TeV <sup>(5)</sup><br><b>Pb-Pb (2018)</b> | Pb-Pb 5.02 TeV <sup>(6)</sup><br>Pb-Pb (2018) |   |
| ٨  |                                                                                                                                   | Pb-Pb (2018)                                                                                                                 | Pb-Pb (2018)                                                            | Pb-Pb 5.02 TeV <sup>(6)</sup><br>Pb-Pb (2018)                                         | Pb-Pb 5.02 TeV <sup>(6)</sup><br>Pb-Pb (2018) |   |

(1) ALICE, PLB 723, 267 (2013)

(2) ALICE, Eur. Phys. J. C76, 86 (2016), 1509.07255

(3) J. Pan, D. Caffarri, QM18

#### (4) J. Pan (PhD Thesis) - paper in 2019.

(5) D. Caffarri - paper in 20192020.

(6) S. Basu - paper in 2019/2020.

- Currently: PID Cuts based on dE/dx, TOF
- Near future: Diff. Identity Method
  - Expanded kinematic range,
  - Better statistics

• OPPORTUNITY FOR "NEW" STUDENTS/ Post-Docs

V. Gonzales et al.



## **Momentum Correlator G<sub>2</sub>**



(N<sub>part</sub>)

S. Gavin Phys.Rev.Lett. 97 (2006) 162302 M. Sharma & C.P. et al (STAR), PLB704, 467 (2011)



- Broadening of G2 w/ centrality
- Different than STAR's
- Implications on viscosity at LHC ?

## Summary

- Charged hadrons BF (Pb-Pb @ 5.02 TeV):
  - $p_{T}$  dependent BF
  - narrowing towards central collisions similar to Pb-Pb @ 2.76 TeV for p<sub>T</sub> <2.0 GeV/c</li>
  - Balancing Charge Yield consistent with narrowing towards central collisions

## • Charged pions & kaons BF (Pb-Pb @ 2.76 TeV):

- B(Δy): π± narrowing towards central collisions similar to h±
- K± no centrality dependence
- Similar trends and magnitude to STAR results for Au-Au @ 200 GeV
- Consistent with two-wave production model
- B( $\Delta \phi$ ): both  $\pi \pm$  and K $\pm$  narrowing towards central collisions
- Strong radial flow Tune models
- From Model Comparisons
  - Models need to account properly for charge conservation.

| System | √s <sub>NN</sub><br>(TeV) | h±                   | π±                   | K± |
|--------|---------------------------|----------------------|----------------------|----|
| Pb-Pb  | 2.76                      | ~                    | •                    | •  |
| Pb-Pb  | 5.02                      | ~                    |                      |    |
| p-Pb   | 5.02                      | <ul> <li></li> </ul> | ~                    |    |
| рр     | 7                         | ~                    | <ul> <li></li> </ul> |    |

publishednew results



#### New Ideas...

## Identity Method for $\pi$ , K, p, $\Lambda$ identification





## • π, K, p identification:

- Compute probability (weight) of measured d*E*/d*x*, corresponds to π, K, p, fill histograms for each species (statistical identification),
- Calculate sum of weights (W) instead of multiplicity
- Calculate moments of W distribution, invert response matrix to determine moments <N> and <N(N-1)>
- Account for misidentification/impurity (and efficiency) without lowering efficiency by imposing strict selection cuts.
- Essentially an unfolding method
- Applicable to integral and differential correlation functions
- Concept applicable to primary/secondary track unfolding also...

Measurements of moments of particle multiplicities w/ IM

- Two particle species: M. Gazdzicki, et al., PRC83 (2011) 054907; M. Gazdzicki, EPJC 8, 131 (1999), nucl-th/9712050.
- Arbitrary number of species: M. I. Gorenstein, PRC84, 024902 (2011).
- Measurements of higher moments: A. Rustamov and M. I. Gorenstein, PRC86, 044906 (2012).
- Measurements of moments in the presence of transverse momentum-dependent efficiency losses: C. A. Pruneau, PRC 96, 054902 (2017)
- Differential CFs w/ efficiency losses: C. Pruneau, A. Ohlson, arXiv:1806.02264v1, Accepted PRC
- Nu-Dyn: πK, πp, Kp, ALICE (Mesut Arsland), submitted to EPJC, arXiv: 1712.07929

## Last: a shameless plug...

- Correlation observables are all inter-connected ...
- Measure/emphasize different aspects of the physics we seek to understand.



~730 pages, ~90\$, a very good value...

For basic intro, see: www.cambridge.org/9781108416788

| Topics                                   | Chapters |
|------------------------------------------|----------|
| Classical Statistics                     | 5        |
| Bayesian Statistics                      | 1        |
| Data Reconstruction/<br>Analysis Methods | 2        |
| Correlation Functions                    | 2        |
| Data Correction/Unfolding                | 1        |
| Basic Monte Carlo<br>Techniques          | 2        |