07/21/2020 IDM 2020 - Jodi Cooley

Future Dark Matter Experiments with Cryogenic Detectors

Jodi Cooley - SMU

Direct Detection Needs

- -Ability to detect low energy dark matter-nucleon couplings
 - -Detect small energy depositions requires low threshold detectors.
 - -Radiogenically pure
 - -Difference between electronic recoils & nuclear recoils
 - -Difference between alphas and nuclear recoils
- -Ability to detect dark matter-electron couplings.
 - -Detect extremely small energy depositions require even lower thresholds.
 - -Ultra pure targets
- -Noise
 - -Environmental and instrumental
- -Shielding from radiogenic and cosmogenic backgrounds

-Position reconstruction and fiducialization

Detection Media for Low Mass Searches

- A lot of work has gone into searching for the canonical WIMP and we have excluded large swaths of parameter space.
- There are many plausible dark matter candidates below 10 GeV/ c^2 .
- Future cryogenic technologies include a mix of materials with small but nonzero band gaps to limit dark counts and maximize energy to carrier conversion.
- Extent of arrows driven by fundamental limitations from kinematics and material properties. Assumes large hurdles can be overcome in energy and charge noise across all experiments.

Noah Kurinsky

CRESST Experiment Operation Principles

- CaWO₄ cryogenic detectors

- Single detector mass ~ 24 g
- Energy Threshold: 30 eV

07/21/2020 IDM 2020 - Jodi Cooley

Limitations: CRESST-III Recent Results

07/21/2020 IDM 2020 - Jodi Cooley

Phys. Rev. D 100, 102002 (2019)

- More than one order of magnitude improvement at 0.5 GeV/c^2
- Extended reach from 0.5 GeV/c^2 to 0.16 GeV/c^2
- Sensitivity limited by unknown background below 200 eV

Run3 07/2020

- Upgrade to 200 readout channels to accommodate - 2nd round with additional 100 modules for O(2 kg) target mass modifications
- Successful cool-down in 03/2020, but stopped due to Corona virus pandemic
- Next cool-down started Monday, July 20!!!

- New cryostat cabling designed and prototyped
- Sensor development to further push detector threshold (10 eV)
- Continuation of studies with alternative detector materials (LiAlO₂, Al₂O₃) which also yield sensitivity for spin-dependent interactions

CRESST-III Future Plans

CRESST Upgrade 2020/2021

SuperCDMS & Edelweiss

SuperCDMS SNOLAB Experiment

- Generation-2 dark matter experiment under construction at SNOLAB
- Infrastructure:
 - depth ~6900 mwe (results in a factor 100 reduction in muon flux from cosmic rays as compared to Soudan)
 - class 2000 or better cleanroom
 - Cryostat will be able to accommodate up to 7 towers
 - $\mathcal{O}(0.1)$ dru gamma background
 - 15 mK base temperature
 - vibration isolation
- Initial payload: ~ 30 kg total, 4 towers with 6 detectors per tower (12 iZIP, 12 HV)

SuperCDMS Dark Matter Sensitivity

07/21/2020 IDM 2020 - Jodi Cooley

Single e-/h+ Pair Sensitivity

.....

Energy Scale in Semiconductors

Band Diagram for Si

- e- excitation momentum and energy scales in semiconductors can be exploited to search for light mass dark matter
- Si $E_{gap} \sim 1.2 \text{ eV}$
 - Indirect band gap requires phonon for transition to happen.
 - Temperature dependent
- $\epsilon_{Si} \sim 3.6 \text{ eV}$
 - Average energy to produce e/h pair
 - Temperature dependent
- Sensitive to energy deposits of $\mathcal{O}(eV)$ (electron scattering) to $\mathcal{O}(10 \text{ eV})$)nuclear scattering

Realm of Solid State Physics

Solid state physics

E < 30 eV

Multi-body system

Allowed energies/momenta given by dispersion relation

Particles may have effective masses

Particle physics

E > keV

Free particles

 $E = p^2/2m$

Particle masses well defined

Table: A. E. Robinson

- Detector Response
 - Details of the band structure become increasingly important

- Detector Response

- Details of the band structure become increasingly important
- PDF to get the numbers of e/h pairs given an energy deposition required, $P(n_{eh}|E_{dep})$
 - Fano statistics (dispersion probabilities ignored or simplified in many pdfs, ongoing efforts)

07/21/2020 IDM 2020 - Jodi Cooley

- For NR: quenching (ionization yield < 1, not in agreement at low energies, lack of data)

- Detector Response
 - Fano statistics (dispersion probabilities)
 - Details of the band structure become increasingly important - PDF to get the numbers of e/h pairs given an energy deposition required, $P(n_{eh}|E_{dep})$
- For NR: quenching (ionization yield < 1)
 - Crystal impurities can lead to partial energy deposits \longrightarrow gives events between quantization peaks

- Detector Response
 - Fano statistics (dispersion probabilities)
 - Details of the band structure become increasingly important - PDF to get the numbers of e/h pairs given an energy deposition required, $P(n_{eh} | E_{dep})$
- For NR: quenching (ionization yield < 1)
 - Crystal impurities can lead to partial energy deposits \longrightarrow gives events between quantization peaks
- Backgrounds
 - Spectral information about radioactive decays at eV scale required.
 - Relevance is exposure dependent

- Detector Response
 - Fano statistics (dispersion probabilities)
 - Details of the band structure become increasingly important - PDF to get the numbers of e/h pairs given an energy deposition required, $P(n_{eh}|E_{dep})$
- For NR: quenching (ionization yield < 1)
 - Crystal impurities can lead to partial energy deposits \rightarrow gives events between quantization peaks
- Backgrounds
 - Spectral information about radioactive decays at eV scale required.
 - Relevance is exposure dependent
 - IR and optical photons can become significant backgrounds at lowest energies.

- Detector Response
 - Fano statistics (dispersion probabilities)
 - Details of the band structure become increasingly important - PDF to get the numbers of e/h pairs given an energy deposition required, $P(n_{eh}|E_{dep})$
- For NR: quenching (ionization yield < 1)
 - Crystal impurities can lead to partial energy deposits \rightarrow gives events between quantization peaks
- Backgrounds
 - Spectral information about radioactive decays at eV scale required.
 - Relevance is exposure dependent
 - IR and optical photons become significant backgrounds at lowest energies. - Dark/leakage current can be significant, dominant background at lowest energies.

- Single-hole e/h-pair resolution devices will have sensitivity to a variety of sub-GeV DM models with g*d exposures
- 0.93 g Si crystal ($1 \times 1 \times 0.4 \text{ cm}^3$) operated at 50-52 mK at a surface test facility.
- Exposure: 3.0 gram-days (collected over 3 days) -operation voltage: 100 V
 - -energy resolution: $\sigma_{ph} = 3 \text{ eV}$

-charge resolution: $\sigma_{eh} = 0.03 \text{ e}^{-h+1}$

- Calibrations with in-run monochromatic 635 nm laser fiber-coupled to room temperature.
- Data selection criteria were applied to remove leakage and surface events.

07/21/2020 IDM 2020 - Jodi Cooley

HVeV Detectors

arXiv:2005.14067 PRL 121, 051301 (2018) APL 112, 043501 (2018) NIM A 963, 163757 (2020)

Edelweiss RED 30 Detector: HV operation

- 33.4 g (20 x 20 mm) Ge bolometer with NTD sensor and electrodes operated in LSM (5 $\mu/m^2/d$)
- Exposure: 2.44 days
 - -operation voltage: 78 V
 - -energy resolution: $\sigma_{ph} = 44 \text{ eV} (1.6 \text{ eV}_{ee})$

-charge resolution: $\sigma_{eh} = 0.53 \text{ e}^{-h+1}$

- Calibrations using ⁷¹Ge KLM (0.16, 1,30 and 10.37 keV) activation lines from AmBe neutron source.
- Data selection criteria were applied to remove events occurring in the NTD (instead of the crystal).

arXiv:2003.01046

Edelweiss RED 30 Detector: HV operation

- Heat only events (those not affected by NTL amplification) are the main source of backgrounds.
 - 10⁶ DRU @ 10 eV_{ee}
 - 1.5 x 10⁵ DRU @ 25 eV_{ee}
- Dominant limitation for >3 e- signals
- May hypothesis have been studied as to the origin. No single contributor has been found.
 - These events are probably multiple sources.

SENSEI

- Skipper-CCD designed by LBNL MSL, fabricated by DALSA
- High-resistivity silicon 675 μ m thick, 1.59 \times 9.42 cm2, 1.925 g active mass
- Sub-electron noise with skipper readout makes single electron resolution possible.

Readout noise, regular CCD

07/21/2020 IDM 2020 - Jodi Cooley

arXiv:2004.11378

Sub-electron noise, skipper readout

DAMIC-SNOLAB

07/21/2020 IDM 2020 - Jodi Cooley

arXiv: 1907.12628

- 7 fully depleted CCDs
- Each CCD is 675 μ m thick, 15 x 15 μ m² pixel size
- $4k \times 4k$ pixels (6.0 g)
- $\sigma' = 2 e^{-} \longrightarrow$ not yet sensitive to e^{-}/h^{+} pair
- Lowest dark count to date

CCD Dark Count Progress

07/21/2020 IDM 2020 - Jodi Cooley

General purpouse CCD setups. No IR cover. At sea level.

SENSEI prototype surface run (low resistiv. Si) and CONNIE experiment (high resistiv. Si). ~IR cover.

SENSEI prototype run (low resistiv. Si). ~IR cover.

DAMIC experiment run (high resistiv. Si). ~IR cover. At SNOLAB (2km underground). Output transistor ON.

Theoretical expectation. Janesick, SPIE press, 2001.

Skipper CCD Plans

- SENSEI has moved to SNOLAB.
 - "Phase 1" system is operational
 - Complete exeperiment will contain 100 grams.
- DAMIC-M at MODANE
 - 1 kg mass
 - 6k x 6k pixels over 9x9 cm2 with 1mm thickness (20 g mass)
 - Integration of skipper readout
- Oscura
 - 10 kg of skipper CCDS

104

SPICE: Sub-ev Polar Interactions in Cryogenic Experiments

- In ionic crystals, optical photons are oscillating Acoustic: electric dipoles.
- Very large coupling to photons (black in the IR) and very large couplings to dark photons
- 30-100 meV phonon sensitivity required.
- An effort is underway in polar crystal R&D using a variety of substrates.
 - GaAs, Al₂O₃ (Saphire), SiO₂
 - Energy Sensitivity R&D
 - 10-20 mK Tc W Films
 - Environmental Noise Reduction
 - Low Stress/ Low Parasitic Heating Crystal Support design

Optical:

arXiv: 1910.10716

HeRALD: Helium Roton Apparatus of Light Dark Matter

R.K. Romani

07/21/2020 IDM 2020 - Jodi Cooley

arXiv: 1810.06283

- Both wet and dry calorimeter readout via TES arrays.

Conclusions

- Cryogenic technologies are making quick progress towards lighter and lighter dark matter.
- There is a healthy mix of existing experiments currently upgrading and running that will produce results in the near term.
- Single e-/h+ detection has been achieved by multiple technologies. There is still R&D needed in order to probe the maximal parameter space.
- There is a large theory space to explore in the next decade!

Initiatives Dark Matter New BRN \square