Warsaw University of Technology

Introduction to Machine Learning Techniques for HEP

Kamil Deja

ALICE

Agenda

- What is Machine Learning?
- Supervised learning
 - Classification
 - Regression
- Unsupervised learning
 - Clustering
 - Frequent sets and Association Rules
 - Dimensionality reduction
- How to use ML for quality assurance?
- Additional Examples
- Most common tools and packages

What is machine learning?

- Algorithms and mathematical models that computer systems use to progressively improve their performance on a specific task.
- Machine learning algorithms build a mathematical model of training data, in order to make predictions or decisions without being explicitly programmed to perform the task.

https://xkcd.com/1838/

Warsaw University of Technology

Supervised learning

Supervised learning

• Supervised learning is the machine learning task of learning a function that maps an input to an output based on example input-output pairs.

Classification

Attributes	Target
------------	--------

X	Υ	Z	Class
1	2	2	Α
1	2	3	В
1	4	3	В
4	2	6	Α

Regression

t

Variable	Z	Υ	X
1.3	2	2	1
2.1	3	2	1
4.93	3	4	1
5	6	2	4

Classification

Definition

Problem of identifying to which of a set of categories (sub-populations) a new observation belongs, on the basis of a training set of data containing observations whose category membership is known.

http://stephanie-w.github.io/brainscribble/classification-algorithms-on-iris-dataset.html

Examples

High Energy Physics:

- Particle Identification based on training set of full simulation
- Jet tagging based on simulation data
- Object tagger in ATLAS for pair production of heavy vector-like quarks with hadronic final states based on simulation data
- Run quality classification based on trending.root and RCT

Outside:

 Prediction of patients diseases based on their lab results and symptoms

Regression

Definition

Regression is a set of statistical processes for estimating the relationships among variables.

 In Machine Learning it is usually referred as a method for predicting the value of one variable

Examples

High Energy Physics:

- Energy regression in calorimeters
- Calculate jet-underlying background in Pb-Pb

Outside:

Predicting the market revenue of the property

Classification and regression algorithms

Naïve Bayesian Classifier

$$P(target|attributes) = \frac{P(attributes|target)P(target)}{P(attributes)}$$

Support Vector Machine (SVM)

Decision Tree

Х	Υ	Class
3	1	1
4	2	0
2	4	1
3	3	0

Random Forest /xgboost

Ensemble learning methods for classification/regression, which
operates on multiple decision trees, and outputs class based on
combined predictions of individual trees.

ALICE

Neural Networks

- Directed graph where vertex (**neurons**) are grouped in **layers** which are connected by **weighted synapses**.
- Training is used to adjust the weights so that the relation between input and output fits the training data
- "Machine learning framework"
- Inspired by human brain
- Commonly used for Classification/Regression, but also suitable for other tasks

Warsaw University of Technology

Unsupervised learning

Clustering

Definition

Machine Learning method of grouping a set of objects in such a way that objects in the same group (called a **cluster**) are more similar (in some sense) to each other than to those in other groups (**clusters**).

Example – clustering of photos in Lyon

Examples

High Energy Physics:

TrackML – Clustering of particle hits

Others:

- Clustering of clients in banks/telecom/Netflix
- Phone users clustering

Clustering algorithms

K-means

DBSCAN

K-Nearest neighbours

Dimensionality Reduction

Definition

Dimensionality reduction is the process of reducing the number of random variables under consideration by obtaining a set of principal variables.

Principal Component Analysis (PCA)

Examples

High Energy Physics:

- Run classification data preparation
- Fast simulation with Variational Autoencoders data representation
- Search for similar events data representation

Outside:

Genetics – data representation and visualisation

Frequent sets and Association Rules

Definition

Association rule learning is a rule-based machine learning method for discovering interesting relations between variables in large databases.

ID	ltems		
- 1	Coke, Bread, Diaper, Milk		
2	Beer, Bread, Diaper, Milk, Mustard		Bread, Diaper -> Beer
3	Coke, Bread, Diaper, Milk	Rules mining	(80% confidence, 60% support)
4	Beer, Bread, Diaper, Milk, Chips		Milk, Diaper -> Coke
5	Beer, Coke, Diaper, Milk		(60% confidence, 40% support)
6	Beer, Diaper, Bread, Eggs		(00% confidence, 40% support)
7	Bread, Milk, Chips, Mustard		

Anomaly detection with ML

- Classification of anomalies (needed: labelled dataset)
- Regression of one value which may indicate anomalies (needed: dataset with known values)
- Clustering of unknown data and searching for outliers (needed: noisy data)
- Dimensionality reduction for sparse data representation and searching of outliers (needed: high dimensional data)

Model evaluation – binary classification

ID	Class	Prob.	Pred
1	0	0.1	0
2	0	0.1	0
3	1	0.2	0
4	0	0.3	0
5	0	0.4	0
6	1	0.4	0
7	1	0.6	1
8	0	0.7	1
9	1	0.7	1
10	1	0.8	1

Test set + predictions

Class						Cla	SS
lon		1	0	on		1	
<u>ict</u>	1	TP	FP	diction	1	3	
Pred	0	FN	TN	Prec	0	2	

- Sensitivity, recall, True Positive Rate = $\frac{TP}{P} = 0.6$
- Specificity, True Negative Rate = $\frac{TN}{N} = 0.8$
- Precision = $\frac{TP}{TP+FP} = 0.75$
- Accuracy = $\frac{TP+TN}{TP+FP+FN+TN} = 0.7$

ROC Curve

Warsaw University of Technology

How to do ML?

What is trendy in ML?

pivarski-bigdata-software

It is possible!

Don't turn Your back to the community

AliROOT

70 000 commits 136 contributors

Most common ML libraries on github:

Python:

Cearn Sci-kit learn

23 000 commits 1200 contributors

Multilingual (Python/R/Java):

Tensorflow

45 000 commits 1750 contributors

Keras

5000 commits 750 contributors

PyTorch

15 000 commits 850 contributors

23 000 commits 1300 contributors

ALICE

(Not so) common knowledge

• Up to 70% of the Data Scientist/ML researcher work is spent on data preparation

- "Garbage in garbage out"
- You will never have a perfect model
- Neural Networks are not the Holy Grall

