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CMS detector
Multi purpose detector at LHC

Approx 90 millions channels

Requires sophisticated DQM



CMS DQM
Data Quality Monitoring



Data Quality Monitoring [5] 
Collection of tools and processes to provide:

Monitoring. Detector and operation performance and 
malfunctions

Certification. Assess and record quality of data and 
software releases

Debugging. Provide detailed information in case of 
problems

Humans are a central part of DQM!
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Data Quality Monitoring: Online 
Collision data and detector status constantly flow 
from detector

Small subset is reconstructed and monitored 
real-time to give immediate feedback about detector 
status

Predefined Quality Tests are designed to identify 
known failures and raise alarm

Online DQM shifter at P5

● Inspect histograms to spot problems
● Certificate Run as GOOD if it has significant 

statistics and good hardware settings
● 3 shifts per day 8 hours each
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Data Quality Monitoring: Offline
Data fully reconstructed a few days after being 
collected

Offline shifters and detector experts check dozens of 
distribution histograms to define goodness of data

Approx 30 Runs are certified per week

Certification is made on Run and Lumisection* levels 

GoldenJSON is produced. List of only GOOD Runs 
and Lumisections

* Granularity of lumisection is a ~23sec of data-taking
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Web service to collect and archive monitoring 
elements (ME)

● ME = ROOT plot + Quality Test

Provides APIs for scripts

Web based interface to browse realtime and 
historical data

DQM GUI provides access to:

● Online: 22,000 runs, 650 GB
● Offline: 400,000 datasets, 4100 GB
● ~100k MEs per Run

DQM GUI
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Run Registry
Automatically collects Run and Lumisection data

Web interface for experts to manually set quality 
flags on data (GOOD/BAD)

Provides APIs for scripts to produce final list of data 
ready for analysis (GoldenJSON)

Currently being re-developed for better usability and 
maintainability 

Aim to accept input from ML services
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● Problem spotting latency
● High manpower demand

○ 24/7 shifts + training
● Occasional involuntary human errors

○ There is a limit to the amount of quantities that a human can process in a finite time interval
○ Transient problem can be overlooked during visual comparison
○ Decision process depends on level of experience and understanding

● Changing running conditions
○ Reference samples change
○ Static thresholds do not scale
○ Maintenance of shifter instructions

Limits of a Human-based DQM

10



Real life example
Power supply issue on the Pixel detector

● Dead regions in 4 layers of the Pixel barrel
● Missing track seeds in that region
● Data certified as BAD (300 pb-1)

Quality Tests based on # of dead Read-Out Chips 
(ROC) are not optimal

● OK - randomly distributed dead ROCs
● NOT OK - dead region in multiple layers

ML can be used to develop mode intelligent tests 
checking relative position of dead ROCs
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Towards ML-based DQM
From rules to (un)supervised models



Reduce manual labor by doing tedious work faster  

● Tons of data (histograms) to compare
● Computer does not get tired

Minimize human errors and optimize human input

Detect anomalies with lower latency

Improve certification quality on lumisection level

Dynamically adapt to conditions change

Provide report of the classification results

How to fit ML in DQM operations?
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Learning techniques

Supervised

All data is labeled

Methods:

● Classification
● Regression

Unsupervised

All data is unlabeled

Methods:

● Clustering
● Association
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Semi-supervised

Some data is labeled

Combination of methods

Expensive to label data
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Online: detector monitoring
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Occupancy plots
Overall occupancy plots are among the most important DQM plots and is used as input for ML studies

They show the frequency of hits in given detector channels 

Used to identify anomalies and diagnose problems
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Drift Tubes 
(DT) Hadronic calorimeter

(HCAL)



Drift Tubes (DT) [4]
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Barrel Muon sub-detector ( |η|≲1.1 )

~ 180k channels

250 chambers 

2 x 2.5m in size 

12 layers  ~60 ch/each



Dataset
Hit occupancy contains the total number of electronic 
hits at each readout channel: 2-dimensional array 

Dataset 21.000 occupancy plots

Labels (provided by humans): 

● 5668 : 612 (GOOD : BAD) 
● 90:10 class distribution ratio

A: Dead one channel 

B: Dead regions in multiple layers

C: Dead region in one layer
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Data preprocessing
Smoothing. According to CMS DT experts isolated misbehaving channels are not considered a problem 

Standardization into fixed dimensionality. 1D Linear interpolation
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Approaches to the anomaly detection in DT
Local:

● Each layer is treated independently from the other 
layers within a chamber

Regional: 

● Extend the local approach to account for intra-chamber 
problems

● Use information of all layers in a chamber, but each 
chamber independently from the others

Global:

● Use information of all the chambers for a given 
acquisition run 

● The position of the chamber in the CMS detector 
impacts occupancy distribution of the channel hits
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Convolutional neural network (CNN) outperforms 
other methods. ROC AUC = 0.995

Activations: ReLU and softmax

Optimizer: Adam

Loss function: cross entropy

Filters out most of the anomalies

Assessing the (mis)behavior with high-granularity (few 
channels)

Each layer is treated independently from the other 
layers

Local strategy: scope, methods & results

● Unsupervised
○ Sobel filter

● Semi-supervised
○ SVM
○ Isolation Forest

● Supervised
○ Shallow neural network (SNN)
○ Convolutional neural network (CNN) 23



Local strategy: scope, methods & results
The local approach has satisfactory performance 
and was successfully implemented in production 
(the DT experts still test it)

Stability of the CNN and the production algorithm 
as a function of time (number of lumisections) for 
three different runs

The proposed strategy is generic enough to be 
applicable to other kinds of CMS muon chambers, 
as well as to other sub-detectors
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Extends local strategy to filter out anomalies not 
seen by the previous approach

Accounts for intra-chamber problems: 
simultaneously consider all layers in a chamber

The occupancy pattern within a chamber 
depends on the layer (row) information

Semi-supervised autoencoder variations:
● (simple) bottleneck
● Denoising
● Sparse
● Convolutional

Regional strategy: scope, methods & results
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Global strategy: scope, method
Simultaneous use of all the chambers data 

The position impacts expected occupancy pattern

Autoencoders learn a compressed representation of 
chamber data

When the bottleneck of the autoencoder is 
3-dimensional one can visually inspect those 
representation

The global approach is then potentially capable to 
spot an unusual behavior of DT chambers taking into 
account the geographical constraints 
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HCAL
Hadronic Calorimeter (HCAL)

● brass-scintillator sampling calorimeter
● coverage up to |η|≈ 3
● ~13k channels
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HCAL: dataset
Hit occupancy contains the total number of electronic hits at each readout channel: 2-dimensional array

Have mostly good data

Manually simulate bad data by setting region

● Dead (no activity)
● Hot (high activity)
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HCAL: supervised
Convolutional neural network

Activation: ReLU

Optimizer: Adam

Loss function: categorical cross entropy

Accuracy: 0.95

ROC AUC: 1, 0.961, 0.961
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HCAL: semi-supervised
Bottleneck autoencoder with convolutional layers

Activation: ReLU

Optimizer: Adadelta

Loss function: mean square error

GOOD vs BAD(hot/dead) are well differentiable even 
with simple parameters
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Offline: data certification
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Dataset 2010
Collected by CMS in 2010. Reconstructed data

Available through CERN OpenData

Use only minimal bias, muon, photon streams

16.000 lumisections

891 features:

● 267 muon, 232 photon, 126 PF jets,  266 calo jets
● observables: transverse momentum, angle, coordinates, mass, etc
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Towards automation of data quality system for CERN CMS experiment [8]

Classification into 3 categories

● Definitely GOOD (white zone)
● Definitely BAD (black zone)
● Ambiguous (gray zone)

○ Decision can’t be made automatically
○ Human intervention is required

Aim to minimize gray zone (Rejection Rate)

Gradient Tree Boosting classifier

10 fold cross validation
34
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Towards automation of data quality system for CERN CMS experiment [8]

System is able to automatically process at least 20% of samples keeping pollution and loss rates on 
negligible level

Less strict restrictions on pollution and loss  increase performance of the system significantly.
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Deep learning for inferring cause of data anomalies [2]

Determine which sub-detector is 
responsible for anomaly

4 NN for each particle type

● Photons
● Muons
● Particle Flow Jets
● Calorimeter Jets

Output is determined by `Fuzzy AND`

Loss function: dynamic cross-entropy
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Deep learning for inferring cause of data anomalies [2]

Each neural network returns a number:

● Close to 0 for BAD lumisections
● Close to 1 for GOOD lumisections

○ Invisible anomaly by this NN

10% of data for validation

ROC AUC = 0.96
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Dataset 2016 
Collected by CMS in 2016. Reconstructed data

Dataset for Jet analysis. Jets probe most of the CMS sub-detectors

2807 features (401 * 7)

● Physics objects: photons, muons, etc
● Observables: energy, eta, phi, etc
● 7 = (Mean, RMS, Q1, Q2, Q3, Q4, Q5)

160.000 lumisections 

98:2 class distribution ratio (GOOD:BAD)
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Anomaly detection using Autoencoders [3]
Semi-supervised approach

Train on only good data

Data is sorted time-wise

Activations: PReLU

Optimiser: Adam (LR=0.0001)

Loss function: mean square error

Training-Validation-Test (60-20-20)
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Anomaly detection using Autoencoders [3]
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Features are grouped by physics object (x-axis)

A: GOOD lumisection. Reconstruction error is low

B: BAD lumisection. Reconstruction error is HIGH

● Observable peaks for anomalous features
● In this case muons and jets look anomalous

ROC AUC = 0.978



Comparison of supervised ML models [6] 
● Naive Bayes

○ Fast training
○ Poor predictive power

● SVM
○ Large number of high-dimensional data badly affected performance

● ANN (Sequential)
○ Average predictive power
○ Slow search of hyper parameters

● Random Forest
○ Fast training
○ Good predictive power

● Gradient Boosted Trees (XGBoost)
○ Good predictive power
○ Average training speed
○ High memory usage during training
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Comparison of supervised ML models [6] 
Class weights - more attention to minority class

Shuffle stratified 10 fold cross validation

Performance metrics: 

● ROC AUC
● ACC
● F1 score
● Training time
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Comparison of supervised ML models [6]
random_state = *my fav number*

Train and test set distribution trap

Naive Bayes model performs ~25% better than in 
previous experiment. NOT good!

Lesson learned: always use cross validation
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CMS partnership with industry 
In the past few years the CMS experiment successfully engaged in partnership with IBM and Yandex 
through CERN Openlab framework

Objectives:

With IBM: to support automatization of online data quality monitoring using ML [1]

With Yandex: to support automatization of offline data certification process using ML [8]
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Run 3
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Experience we learned from studying ML4DQM and ML4DC has been extremely valuable

Some prototype implementation already in hands with promising results

Plan to integrate ML tools in the standard Monitoring and Data Certification procedures for Run 3

We don’t expect to replace people

In Run 3, we still expect to have online/offline shift people, however, with ML, we expect much improved 
data quality monitoring and certification

Keep synergy with industry

Use detector metadata (HV, temp, etc) to predict hardware failures



Recommendations for ML
Go supervised!

Go labels!

Go cross validation!
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Questions, ideas, feedback

cms-ml4dc@cern.ch

cms-ml4dqm@cern.ch 
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Backup
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Cross validation
1. Partition dataset into multiple train : test folds
2. Train and evaluate model with all folds
3. Average scores

Averaged performance measure is independent from 
train : test distribution

Solution to overfitting
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HCAL: semi-supervised results
Reconstruction of good, dead and hot 

51


