

Offline QC data sets for ML in ALICE

Marian Ivanov Jens Wiechula

ML in QA Workshop – 3./4. Dec 2018

Outline

- Considerations on input sources
- Types of sources
- Origin of sources
- Usage examples
- Data sizes (TPC)
- Summary

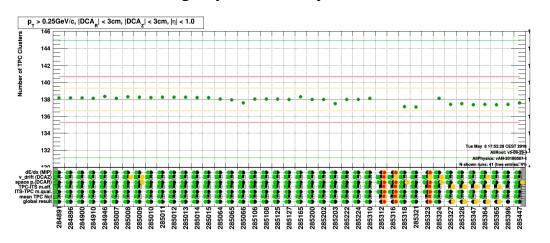
Considerations on input sources

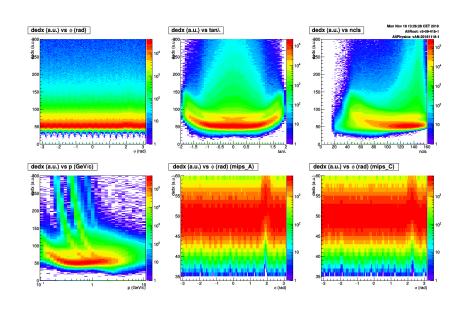
- Provide homogeneous access to heterogeneous sources
 - Data bases (e.g. logbook, MonALISA, DCS, ...)
 - Root files (QA, calibration, ...)
 - Text files (logs, ...)
 - → Easy correlation of different sources
- Reduce load on experts
 - Automation of data extraction (no time costly manual intervention for each new data input)
 - → Faster feedback → Trouble shooting of problems in the data quality
 - Allow experts to spend more time on important tasks
- Standardized validated data sources
 - Automation of plotting
 - Automation of decisions on data quality
 - Automation of alarm levels
 - Enable non-experts to make high-level data analysis

Relevant input sources

- Offline/Online QA (root files) automatized
- Calibration (OCDB root files, partially contains DCS information via the shuttle) – automatized
- Logbook (SQL) automatized
- MonALISA (web interface) automatized
- DCS (Oracle DARMA interface) manual
 - Scriptable access would be very welcome
- Custom local analysis → used by experts e.g. during development
- Logfile summaries (text files) → not yet in production
- High level user analysis → proposed but not used

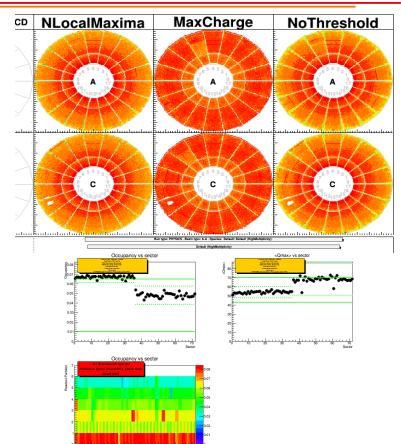
Offline QA procedure




- CPass0 / CPass1 / PPass automatically triggered after run finished
- QA analysis automatically started after CPass1 / PPass → QAresults(_barrel).root
 - (Histogrammed) results of all detectors
- QA postprocessing run as cron job, checking for new QAresults(_barrel).root available
 - Produce typical QA per run plots
 - Produce run and period summary (trending) information
 - Produce QA web pages
 - Trigger (automatic) alarms

Standard QA visualisation examples

- trending.root trees automatically created during the QA
- Run centrally at CERN
- Used by (almost) all detectors



http://aliqa[DET].web.cern.ch/aliqa[DET]/{data,sim}/[year]/[period]/[pass]/trending.root

Online QA procedure – TPC example

- Process raw data in DAs
- Run simple cluster finding
- Store average cluster properties per readout pad in OCDB
- Provide projections to the online QA shifter via Amore

OCDB trending

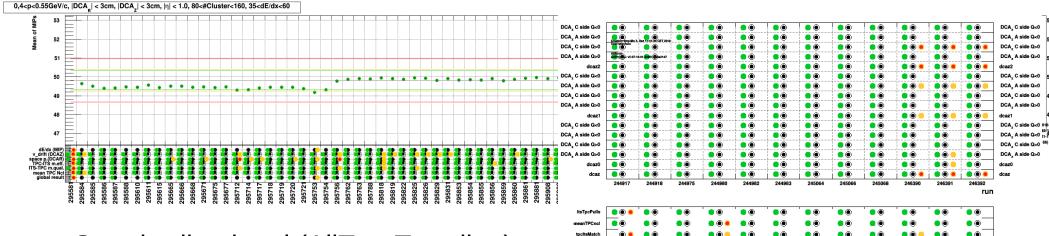
- Automatically go through all relevant OCDB objects and produce summary trees
 - Calibration data
 - DCS data (via shuttle)
 - Online DA output (Pedestals, simple cluster finder, ...)
- Private cron job run at GSI
 - Output copied to QA web pages
- Done for TPC since run 1, activities for TRD started

Logbook and MonALISA

Logbook

- Root trees created in cron jobs, published on QA web site
- e.g. data rates, data volumes, trigger information, ...
- MonALISA
 - Root trees created via web page interface
 - e.g. production information (data, MC)

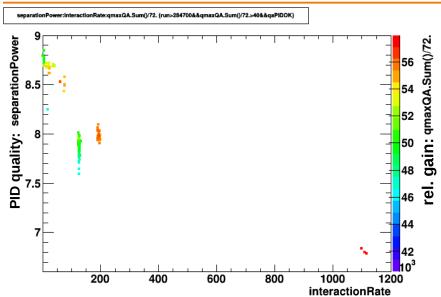
Usage examples: Combining data sources




```
AliExternalInfo externalInfo;
treeQA = externalInfo->GetTree("QA.TPC", period, pass,
"QA.TPC;QA.TRD;QA.TOF;QA.ITS;Logbook;QA.rawTPC");
```

- Interface to the most relevant data source predefine in the default configuration file of the AliExternalInfo.cfg
 - Automatic connect between different sources
 - Easy to add new sources
 - Possibility to overwrite default locations
 - E.g. for development purposes

Usage examples: Default trending plots



- Standardized tool (AliTreeTrending) to create simple trending plots and status matrices
- Manually define limits for warning, outlier, physics acceptable
- Configuration of status information

More details can be found here

Usage examples: Expert QA

Simple access to sources

- No manual interaction needed
 - → trending info created automatically

Connection of several sources

- Pid quality (QA.TPC)
- interaction rate (QA.EVS)
- gain (QA.rawTPC)
 - qmaxQA (OCDB Amore)
- B field (Logbook)

Data sizes in the present system

- QA (TPC, all years, all periods, all passes): 2G
- OCDB trending (TPC, all years, all periods, one pass):
 ~600MB
- Logbook (All years): 100MB
- MonALISA (All years, all periods, all passes): <100MB
- DCS currents (TPC + TRD): e.g. LHC150 ~50MB (relevant summary data averages etc.), ~3GB (raw data)

Summary

- QA relevant information are gathered from many (heterogeneous) sources
- Gathered run (or sub-run wise) in root trees
 - Common format for easy connects
 - Most physicists familiar with usage
- Provide common interfaces for combining and plotting the information
- Output used for
 - QA website generation
 - "Automatic" QA decision
 - Expert queries
 - Input for ML techniques