
PID in ALICE with
Machine Learning

Łukasz Graczykowski1

Maciej Buczyński1, Michał Glinka2

1 Faculty of Physics
2 Faculty of Electronics and IT

Machine Learning and Quality Control in ALICE
CERN

4 December 2018

2/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Goals of the data science
group at WUT

● Use ALICE and its data as a unique environment to
advance the Machine Learning field of science

● Identify areas where both ALICE (or HEP in
general) and ML communities can mutually
benefit

● More focus on Machine Learning research rather
than simple implementations of standard ML tools
for ALICE use cases

● Disclaimer:
– I’m a physicist without a ML expertise
– My task is to guide and coordinate the work of WUT

ML computer scientists within ALICE

3/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Three areas of research

● Data Quality Assurance – prediction of detector
quality label assignment
– covered by Kamil Deja

● Simulation of TPC clusters in Monte Carlo data
using generative networks
– not covered this week

● Development of more precise particle
identification (PID)
– scope of this talk

4/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Particle identification
● Particle identification (PID) is one of the most important steps in

many physics analyses

● Crucial for Quark-Gluon Plasma measurements

● PID is one of the strongest advantages of ALICE:

– practically all known techniques used (dE/dx energy loss, time-of-
flight, Cherenkov radiation for hadrons and transition radiation for
electrons)

– possibility to identify (anti-)nuclei

– very good separation of pions, kaons, protons, electrons over a wide
momentum range

– separation of signals of charged hadrons and electrons for very low
momenta (down to 0.1 GeV/c)

5/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Particle identification

HMPID

ITS TPC

TRD

TOF

6/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Traditional vs ML PID
● Traditional PID:

– a typical analyzer selects particles
“manually” by cutting on certain
quantities, like the number of standard
deviations of a signal from the expected
value

– most limitations come in the regions
where signals from different particle
species cross

– “cut” optimization is a time-consuming
task

● Machine learning PID:

– perfect task for machine learning

– can learn non-trivial relations between
different track parameters and PID

– no “trial and error” approach

https://arxiv.org/pdf/nucl-ex/0505026.pdf

7/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Proposed solution for PID
● Build a ML classifier that can outperform traditional PID

● Train and validate the classifier on Monte Carlo and real data

● Create a simple interface for users in AliRoot

● In the first step – use AOD files and AOD tracks for classification
as the users do while manually setting their cuts

● Limitations:

● Quality of the classifier will depend on the MC sample (discrepancies
between data and MC)

● No easy way to calculate systematic uncertainties from the
procedure

● The classifier is a “black box” - no easy way to tell what’s going on
inside

8/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Decision tree
● A decision tree is a tree where each node represents a feature

(attribute), each link (branch) represents a decision (rule) and each
leaf represents an outcome (categorical or continues value)

● Decision tree learning uses a decision tree to go from observations
about an item (attributes) to conclusions about the item's target
value (leaves)

9/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Random Forest
● A collection of decision trees (“forest”) where each tree votes for a

final decision

● Each tree is trained on a subset of randomly selected training data

● The final result is (in most cases) the one with majority of votes

● … in addition, adaptive boosting was used

10/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Let’s see some results

11/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

PID parameter importance

11

● Focus on kaons

● Input parameters were reduced to the most significant ones

● Importance of AOD track parameters – their contribution to the
final result (kaon selection)

12/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Results – kaon selection
● Test data sample:

– pp @ 7 TeV, Pythia 6 Perugia-0

● Traditional PID:

–

–

– veto on other particles

Purity Efficiency

nσ ,TPC
2

<2 , for pT≤0.5 GeV/ c

√nσ ,TPC
2

+nσ ,TOF
2

<2 , for pT>0.5 GeV/ c

● Efficiency

● Purity = 1 – C
C – contamination
(fraction of correctly identified)

13/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

relevant elements

selected elements

false positivestrue positives

false negatives true negatives

Sensitivity=

How many relevant
items are selected?
e.g. How many sick
people are correctly
identified as having
the condition.

Specificity =

How many negative
selected elements
are truly negative?
e.g. How many
healthy peple are
identified as not
having the condition.

ROC curve (kaons)
● Receiver Operating Curve (ROC) – it’s a plot of

true positive rate (TPR) vs false positive rate (FPR)

● Statistical measures of a classifier:

– “Sensitivity” (=TPR), proportion of correctly
identified in our case it’s simply → purity

– “Specificity” (=1-FPR), proportion of correctly
rejected ones

ROC curve

random guessing

14/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Monte Carlo and data

● So far we’ve seen the results of the classification on MC data only

● How does it actually correspond to experimental data?

● Can we use the classifier in a real analysis?

● Let’s see the TPC dE/dx and TOF beta plots for experimental data
and Monte Carlo

15/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

TPC accepted kaons

Monte Carlo
Traditional PID

Monte Carlo
ML PID

ALICE data
Traditional PID

ALICE data
ML PID

16/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

TPC rejected (not kaons)
Monte Carlo

Traditional PID
Monte Carlo

ML PID

ALICE data
Traditional PID

ALICE data
ML PID

veto on other particles

17/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

TPC contamination (kaons)

Monte Carlo
Traditional PID

Monte Carlo
ML PID

18/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

TOF accepted kaons

Monte Carlo
Traditional PID

Monte Carlo
ML PID

ALICE data
Traditional PID

ALICE data
ML PID

19/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

TOF rejected (not kaons)

Monte Carlo
Traditional PID

Monte Carlo
ML PID

ALICE data
Traditional PID

ALICE data
ML PID

20/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

TOF contamination (kaons)

Monte Carlo
Traditional PID

Monte Carlo
ML PID

21/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

TPC vs TOF accepted kaons
Monte Carlo

Traditional PID
Monte Carlo

ML PID

ALICE data
Traditional PID

ALICE data
ML PID

22/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

TPC vs TOF accepted kaons
Monte Carlo

Traditional PID
Monte Carlo

ML PID

ALICE data
Traditional PID

ALICE data
ML PID

23/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

TOF time

Monte Carlo ALICE data

● From our point of view TOF has a fantastic feature of a possibility
to calculate mass of the recorded particle and compare it to the
one from PDG

● Thanks to that we can test contamination independently of MC
simulations

mTOF
2 =p2(1

β
−1)

24/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Implementation in AliRoot

25/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Implementation
● Training part

– Not covered in this talk
– Service work by Aaron Capon (SMI Vienna)
– Proposed solution: to be done in a centralized way

● Classification part
– Classifier prepared by Michał Glinka, an IT student
– Work by Maciej Buczyński, a physics student
– Different attempts tested during Maciej’s three

summer months at CERN this year
– Demo/beta version already works

26/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Classifier
● We get the trained classifier in a Python format (serialized

classifier object) via the Python procedure (classifier.py)

27/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Classification – general idea
● Get the tracks (from AOD files) and the trained model in Python

● Propagate AOD tracks through the model

● The ML PID information consists of a PDG code of the predicted
particle and probabilities for other PDG codes

● Present the information to the user

– via new AliMLPIDresponse task and AliMLPIDUtil object

28/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

First attempt
● Track-by-track

implementation

● Framework to iterate
over events, loop over
tracks in UserExec

● Classifier listens in the
background

● Stripped files sent via
pipe

● PID results received via
another pipe

● The method is VERY
SLOW

29/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Scikit-learn benchmark
● In default track-by-track implementation, with threads, we can

process only ~9 tracks/s (overhead from the thread creation) →
no multiple threads allowed on the GRID

● Increase to more than 100 tracks/s if we do not allow threads

● Not very much difference with multiple tracks wrt single track

30/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Second attempt
● Propagate multiple tracks

through classifier

● Two loops over events
needed

● No easy way in AliRoot:

– create a temporary
(stripped) file

– propagate the temporary
file through the classifier

– produce predicted.root file

● In the second loop over
events use a lookup table to
match the two files

31/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Third attempt idea
● Since there is no need to change the classifier by users, one can

centralize the classification part as well

● Run the classification once (for example together with
reconstruction pass or AOD creation) and store the classifier for
every run

● Users would access the already existing ML PID attributes for a
given run

● But… this also has some drawbacks:

– no possibility to modify the classifier by the user

– reliable Monte Carlo has to be ready before

– no easy way to pair up events globally (see next slide)

32/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Event pairing problem
How can we pair events from predicted.root with the ones a user
gets in his/her analysis from the framework?

● The predicted.root file consists of only those tracks for which PID
information was available

● Tracks are not necessarily in the same order

● A track identification within the event is easy (track->GetID())...

● … but no variable to identify tracks within the AOD file (across
multiple events)

– candidates like fTimeStamp or GetEventIDAsLong (combines
period, orbit, and bunch id) – may work with real data, but not
present in MC

33/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Our current proposal
● Propagate multiple tracks through the classifier combined from

single events (do not combine multiple events)

– computational time of a simple pT analysis task with ML PID (scikit-
learn) and without ML PID (one 200 MB AOD file):

Real time 0:00:34 --- Without ML PID

Real time 0:01:33 --- With ML PID

– the analysis with ML PID is 3x slower than without ML PID

● If providing a framework in Python is not possible now, use the
C++ Random Forest library (for example Ranger) instead of Python

● First tests:

– created a “random” C++ Random Forest of the same size and depth

– compare Ranger and scikit-learn speed tests (next slide)

34/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Scikit-learn vs Ranger

● Ranger (C++) is slower than scikit-learn (Python) Python is faster→

● Ranger creates threads even when set to 1 – we expect a speed up when
removing that

35/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Working demo/beta example

run macro

user’s analysis task

● User just needs to add
a couple of lines – like
for traditional PID
response task

36/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Summary
● Advantages:

– ML-based PID outperforms traditional PID, clearly
seen in practically all tests

– training needed only once for each data set – no
need for manual cut optimizations

● Problems:
– Track-by-track implementation (optimal from our

side) is very slow
– No global track id information (across multiple data

files) stored both in real data and MC data needed to
match files

– C++ Python connection is also a weak point↔

37/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Thank you

38/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Backup

39/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Deep Convolutional GAN
● Class of architectures which use the convolutional tools and

deconvolutional layers – mostly used with images

All features Map

40/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

condDCGAN: Conditional
DCGAN

● Generator – deconvolutional layers

● Discriminator – convolutional layers

● Network conditioned on particle momenta, mass, and charge

● Output classification – sigmoid function

Input Dense
1

+act

deConv
1

+act

deConv
2

+act
deConv

3
+act

deConv
4

+act

Input
Conv 3

+act

Conv 4
+act

Dense
1,2

+act

Output+
sigmoid

100x1 99x1

33x3x1
52x5x50

76x7x30
170x9x40

159x3x40
159x3x1

116x3x50
23x1x50

32x1

32x1

5x1

64x1

px
py
pz

m
q

px py pz m q

Output+
sigmoid

159x3x1

deConv
5

+act
Conv 1

+act

159x3x150 135x3x70

Conv 2
+act

DiscriminatorGenerator

41/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

condDCGAN+: combined loss
● Training on on the full MC simulations

● Preparing the noise from initial parameters of MC simulations

● Comparing the generated samples with original ones

● Combining origininal conditional GAN loss with the results of
comparison

41

m - initial parameters (particle momenta),
X - original value corresponding to m ,
p(z|m) - distribution of a noise vector under initial parameters m
z - input into a generator
G and D - generator and discriminator
n - the number of produced clusters Additional parameters and are used to α β

weight the share of individual losses.
Best performing values are = 0.6 and = 0.8 α β

42/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Simulation of TPC clusters in
Monte Carlo data using

generative networks

43/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Time Projection Chamber
● Tracking in ALICE is performed by

ITS, TPC, TRD and TOF

● First attempts – focus on the TPC only:

– main tracking device

– located from 0.8 m (inner radius) to 2.5 m
(outer radius) from the beam and extending
~2.5 m in each direction along the beam axis

– volume of 95 m3

– filled with Ne-CO2 gas mixture (90%-10%)

– clusters - points in 3D space, together with
the energy loss, which were presumably
generated by a particle traveling through

– provides up to 159 clusters per track

I.Konorov, Front-end electronics for Time Projection chamber

ALICE Data Preparation Group

44/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Simulation and reconstruction
● Current process relies on 5 independent modules

● The computationally most expensive module is particle
propagation through the detector’s matter

Collision
generator

Particle
propagation

Electronic
signals
(digits)

Digits to
Clusters Tracking

Monte Carlo
simulation

Real data

ALICE Data Preparation Group

45/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Simulation and reconstruction

● Generative solution for cluster simulation:

– substitute the detector simulation and check for the speed-up

– full simulation still needed to generate training samples

– immediate drawback: quality of such MC data can be either
comparable or lower than the full detector simulation – limits
potential applications

Collision
generator

Particles
propagatio

n

Electronic
signals
(digits)

Digits to
Clusters

Tracking

Noise Generative
Model

46/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Generative Adversarial
Networks

● Generative Adversarial Network (GAN) is a neural network
architecture of two networks competing with each other (playing a
min-max game)

– “Generator” is trained to produce fake data resembling the real data

– “Discriminator” aims to predict whether an example data is real or
fake

https://giphy.com/gifs/leonardo-dicaprio-catch-me-if-you-can-
5leocharacters-t1h4nnWEWKfn2

https://33milesinnewaygocounty.files.wordpress.com

https://thechive.files.wordpress.com

Discriminator

Generator

47/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Generative Adversarial
Networks

● Typical use cases:

– mainly generation of photo quality fake images (i.e. of celebrities)

https://arxiv.org/abs/1710.10196

https://arxiv.org/pdf/1612.00005v1.pdf

48/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Generative Adversarial
Networks

● Extending the GAN architecture – provide a set of initial
parameters for the generator and discriminator:

– generator would not generate a random output, but a customized one

– in our case: initial momenta of Monte Carlo particles

48

https://giphy.com/gifs/leonardo-dicaprio-catch-me-if-you-can-
5leocharacters-t1h4nnWEWKfn2

https://33milesinnewaygocounty.files.wordpress.com

https://thechive.files.wordpress.com

Discriminator

Generator

Initial Parameters

49/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

TPC clusters with GANs
● It is not (yet!) possible to generate the full 3D image of the event at

once (especially in the Pb-Pb event)

● Our solution is to:

– generate clusters for single particles

– two separate flows for spatial coordinates (x,y,z) and the energy

– in the beginning focus only on 3D coordinates

– merge generated samples (individual particles) into full images

– training of the GAN on original full simulations

50/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Example results
proton kaon

Original
event

GAN event

51/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Results
● Mean Squared Error (MSE) from the original helix as a quality

measure

● Evaluation conducted on the separate test-set with ~15000 tracks
MSE visualisation:
Red - error
Grey- ideal helix
Orange – original clusters
Blue – generated clusters

Method
Mean MSE

(mm)
Median MSE

(mm) Speed-up

GEANT3 1.20 1.12 1

Random
(estimated)

2500 2500 N/A

condLSTM GAN 2093.69 2070.32
100

condLSTM GAN+ 221.78 190.17

condDCGAN 795.08 738.71
25

condDCGAN+ 136.84 82.72

52/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Computational cost
● Performance test conducted on the standalone machine with Intel

Core i7-6850K (3.60 GHz) CPU using single core and no GPU

● Additional order of magnitude speed-up for GAN models with
nVidia Titan Xp GPU

	Slide1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

