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Goals of the data science 
group at WUT

● Use ALICE and its data as a unique environment to 
advance the Machine Learning field of science

● Identify areas where both ALICE (or HEP in 
general) and ML communities can mutually 
benefit

● More focus on Machine Learning research rather 
than simple implementations of standard ML tools 
for ALICE use cases

● Disclaimer:
– I’m a physicist without a ML expertise
– My task is to guide and coordinate the work of WUT 

ML computer scientists within ALICE
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Three areas of research

● Data Quality Assurance – prediction of detector 
quality label assignment
– covered by Kamil Deja 

● Simulation of TPC clusters in Monte Carlo data 
using generative networks
– not covered this week 

● Development of more precise particle 
identification (PID) 
– scope of this talk



4/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Particle identification
● Particle identification (PID) is one of the most important steps in 

many physics analyses

● Crucial for Quark-Gluon Plasma measurements

● PID is one of the strongest advantages of ALICE:

– practically all known techniques used (dE/dx energy loss, time-of-
flight, Cherenkov radiation for hadrons and transition radiation for 
electrons)

– possibility to identify (anti-)nuclei

– very good separation of pions, kaons, protons, electrons over a wide 
momentum range

– separation of signals of charged hadrons and electrons for very low 
momenta (down to 0.1 GeV/c) 
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Particle identification

HMPID

ITS TPC

TRD

TOF
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Traditional vs ML PID
● Traditional PID:

– a typical analyzer selects particles 
“manually” by cutting on certain 
quantities, like the number of standard 
deviations of a signal from the expected 
value

– most limitations come in the regions 
where signals from different particle 
species cross

– “cut” optimization is a time-consuming 
task

● Machine learning PID:

– perfect task for machine learning

– can learn non-trivial relations between 
different track parameters and PID

– no “trial and error” approach

https://arxiv.org/pdf/nucl-ex/0505026.pdf
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Proposed solution for PID
● Build a ML classifier that can outperform traditional PID

● Train and validate the classifier on Monte Carlo and real data

● Create a simple interface for users in AliRoot

● In the first step – use AOD files and AOD tracks for classification 
as the users do while manually setting their cuts

● Limitations:

● Quality of the classifier will depend on the MC sample (discrepancies 
between data and MC)

● No easy way to calculate systematic uncertainties from the 
procedure

● The classifier is a “black box” - no easy way to tell what’s going on 
inside
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Decision tree
● A decision tree is a tree where each node represents a feature 

(attribute), each link (branch) represents a decision (rule) and each 
leaf represents an outcome (categorical or continues value)

● Decision tree learning uses a decision tree to go from observations 
about an item (attributes) to conclusions about the item's target 
value (leaves)
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Random Forest
● A collection of decision trees (“forest”) where each tree votes for a 

final decision

● Each tree is trained on a subset of randomly selected training data

● The final result is (in most cases) the one with majority of votes

● … in addition, adaptive boosting was used



10/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

Let’s see some results
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PID parameter importance

11

● Focus on kaons

● Input parameters were reduced to the most significant ones

● Importance of AOD track parameters – their contribution to the 
final result (kaon selection)
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Results – kaon selection
● Test data sample:

– pp @ 7 TeV, Pythia 6 Perugia-0

● Traditional PID:

–

–

– veto on other particles

Purity Efficiency

nσ ,TPC
2

<2 ,  for pT≤0.5  GeV/ c

√nσ ,TPC
2

+nσ ,TOF
2

<2 ,  for pT>0.5  GeV/ c

● Efficiency

● Purity = 1 – C
C – contamination
(fraction of correctly identified) 



13/374 December 2018, ML Workshop Łukasz Graczykowski (WUT)

relevant elements

selected elements

false positivestrue positives

false negatives true negatives

Sensitivity=

How many relevant 
items are selected? 
e.g. How many sick 
people are correctly 
identified as having 
the condition.

Specificity = 

How many negative 
selected elements 
are truly negative? 
e.g. How many 
healthy peple are 
identified as not 
having the condition.

ROC curve (kaons)
● Receiver Operating Curve (ROC) – it’s a plot of 

true positive rate (TPR) vs false positive rate (FPR)

● Statistical measures of a classifier:

– “Sensitivity” (=TPR), proportion of correctly 
identified  in our case it’s simply → purity

– “Specificity” (=1-FPR), proportion of correctly 
rejected ones

ROC curve

random guessing
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Monte Carlo and data

● So far we’ve seen the results of the classification on MC data only

● How does it actually correspond to experimental data?

● Can we use the classifier in a real analysis?

● Let’s see the TPC dE/dx and TOF beta plots for experimental data 
and Monte Carlo
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TPC accepted kaons

Monte Carlo
Traditional PID

Monte Carlo
ML PID

ALICE data
Traditional PID

ALICE data
ML PID
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TPC rejected (not kaons)
Monte Carlo

Traditional PID
Monte Carlo

ML PID

ALICE data
Traditional PID

ALICE data
ML PID

veto on other particles
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TPC contamination (kaons)

Monte Carlo
Traditional PID

Monte Carlo
ML PID
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TOF accepted kaons

Monte Carlo
Traditional PID

Monte Carlo
ML PID

ALICE data
Traditional PID

ALICE data
ML PID
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TOF rejected (not kaons)

Monte Carlo
Traditional PID

Monte Carlo
ML PID

ALICE data
Traditional PID

ALICE data
ML PID
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TOF contamination (kaons)

Monte Carlo
Traditional PID

Monte Carlo
ML PID
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TPC vs TOF accepted kaons
Monte Carlo

Traditional PID
Monte Carlo

ML PID

ALICE data
Traditional PID

ALICE data
ML PID
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TPC vs TOF accepted kaons
Monte Carlo

Traditional PID
Monte Carlo

ML PID

ALICE data
Traditional PID

ALICE data
ML PID
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TOF time

Monte Carlo ALICE data

● From our point of view TOF has a fantastic feature of a possibility 
to calculate mass of the recorded particle and compare it to the 
one from PDG

● Thanks to that we can test contamination independently of MC 
simulations

mTOF
2 =p2( 1

β
−1)
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Implementation in AliRoot
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Implementation
● Training part

– Not covered in this talk
– Service work by Aaron Capon (SMI Vienna)
– Proposed solution: to be done in a centralized way

● Classification part
– Classifier prepared by Michał Glinka, an IT student
– Work by Maciej Buczyński, a physics student
– Different attempts tested during Maciej’s three 

summer months at CERN this year
– Demo/beta version already works
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Classifier
● We get the trained classifier in a Python format (serialized 

classifier object) via the Python procedure (classifier.py) 
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Classification – general idea
● Get the tracks (from AOD files) and the trained model in Python

● Propagate AOD tracks through the model

● The ML PID information consists of a PDG code of the predicted 
particle and probabilities for other PDG codes

● Present the information to the user

– via new AliMLPIDresponse task and AliMLPIDUtil object 
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First attempt
● Track-by-track 

implementation

● Framework to iterate 
over events, loop over 
tracks in UserExec

● Classifier listens in the 
background

● Stripped files sent via 
pipe

● PID results received via 
another pipe

● The method is VERY 
SLOW
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Scikit-learn benchmark
● In default track-by-track implementation, with threads, we can 

process only ~9 tracks/s (overhead from the thread creation)  →
no multiple threads allowed on the GRID

● Increase to more than 100 tracks/s if we do not allow threads

● Not very much difference with multiple tracks wrt single track
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Second attempt
● Propagate multiple tracks 

through classifier

● Two loops over events 
needed

● No easy way in AliRoot:

– create a temporary 
(stripped) file 

– propagate the temporary 
file through the classifier

– produce predicted.root file

● In the second loop over 
events use a lookup table to 
match the two files
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Third attempt idea
● Since there is no need to change the classifier by users, one can 

centralize the classification part as well

● Run the classification once (for example together with 
reconstruction pass or AOD creation) and store the classifier for 
every run

● Users would access the already existing ML PID attributes for a 
given run

● But… this also has some drawbacks:

– no possibility to modify the classifier by the user

– reliable Monte Carlo has to be ready before

– no easy way to pair up events globally (see next slide) 
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Event pairing problem
How can we pair events from predicted.root with the ones a user 
gets in his/her analysis from the framework?

● The predicted.root file consists of only those tracks for which PID 
information was available

● Tracks are not necessarily in the same order

● A track identification within the event is easy (track->GetID())...

● … but no variable to identify tracks within the AOD file (across 
multiple events)

– candidates like fTimeStamp or GetEventIDAsLong (combines 
period, orbit, and bunch id) – may work with real data, but not 
present in MC
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Our current proposal
● Propagate multiple tracks through the classifier combined from 

single events (do not combine multiple events)

– computational time of a simple pT analysis task with ML PID (scikit-
learn) and without ML PID (one 200 MB AOD file):

Real time 0:00:34 --- Without ML PID

Real time 0:01:33 --- With ML PID

– the analysis with ML PID is 3x slower than without ML PID 

● If providing a framework in Python is not possible now, use the
C++ Random Forest library (for example Ranger) instead of Python

● First tests:

– created a “random” C++ Random Forest of the same size and depth

– compare Ranger and scikit-learn speed tests (next slide)
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Scikit-learn vs Ranger

● Ranger (C++) is slower than scikit-learn (Python)  Python is faster→

● Ranger creates threads even when set to 1 – we expect a speed up when 
removing that
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Working demo/beta example

run macro

user’s analysis task

● User just needs to add 
a couple of lines – like 
for traditional PID 
response task
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Summary
● Advantages:

– ML-based PID outperforms traditional PID, clearly 
seen in practically all tests

– training needed only once for each data set – no 
need for manual cut optimizations

● Problems:
– Track-by-track implementation (optimal from our 

side) is very slow
– No global track id information (across multiple data 

files) stored both in real data and MC data needed to 
match files

– C++  Python connection is also a weak point↔
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Thank you
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Backup
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Deep Convolutional GAN
● Class of architectures which use the convolutional tools and 

deconvolutional layers – mostly used with images

All features Map
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condDCGAN: Conditional 
DCGAN

● Generator – deconvolutional layers

● Discriminator – convolutional layers

● Network conditioned on particle momenta, mass, and charge

● Output classification – sigmoid function

Input Dense 
1

+act

deConv
1

+act

deConv 
2

+act
deConv 

3
+act

deConv 
4

+act

Input
Conv 3

+act

Conv 4
+act

Dense 
1,2

+act

Output+
sigmoid

100x1 99x1

33x3x1
52x5x50

76x7x30
170x9x40

159x3x40
159x3x1

116x3x50
23x1x50

32x1

32x1

5x1

64x1

px 
py 
pz

m
q

px py pz m q

Output+
sigmoid

159x3x1

deConv 
5

+act
Conv 1

+act

159x3x150 135x3x70

Conv 2 
+act

DiscriminatorGenerator
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condDCGAN+: combined loss
● Training on on the full MC simulations

● Preparing the noise from initial parameters of MC simulations

● Comparing the generated samples with original ones

● Combining origininal conditional GAN loss with the results of 
comparison

41

m - initial parameters (particle momenta), 
X  - original value corresponding to m , 
p(z|m) - distribution of a noise vector under initial parameters m 
z - input into a generator
G and D - generator and discriminator
n - the number of produced clusters Additional parameters  and  are used to α β

weight the share of individual losses. 
Best performing values are  = 0.6 and  = 0.8 α β
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Simulation of TPC clusters in 
Monte Carlo data using 

generative networks
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Time Projection Chamber
● Tracking in ALICE is performed by

ITS, TPC, TRD and TOF

● First attempts – focus on the TPC only: 

– main tracking device

– located from 0.8 m (inner radius) to 2.5 m 
(outer radius) from the beam and extending 
~2.5 m in each direction along the beam axis

– volume of 95 m3

– filled with Ne-CO2 gas mixture (90%-10%) 

– clusters - points in 3D space, together with 
the energy loss, which were presumably 
generated by a particle traveling through

– provides up to 159 clusters per track

I.Konorov, Front-end electronics for Time Projection chamber

ALICE Data Preparation Group
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Simulation and reconstruction
● Current process relies on 5 independent modules

● The computationally most expensive module is particle 
propagation through the detector’s matter

Collision 
generator

Particle 
propagation

Electronic 
signals 
(digits)

Digits to 
Clusters Tracking

Monte Carlo 
simulation

Real data

ALICE Data Preparation Group
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Simulation and reconstruction

● Generative solution for cluster simulation:

– substitute the detector simulation and check for the speed-up

– full simulation still needed to generate training samples

– immediate drawback: quality of such MC data can be either 
comparable or lower than the full detector simulation – limits 
potential applications

Collision 
generator

Particles 
propagatio

n

Electronic 
signals 
(digits)

Digits to 
Clusters

Tracking

Noise Generative 
Model
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Generative Adversarial 
Networks

● Generative Adversarial Network (GAN) is a neural network 
architecture of two networks competing with each other (playing a 
min-max game)

– “Generator” is trained to produce fake data resembling the real data

– “Discriminator” aims to predict whether an example data is real or 
fake

https://giphy.com/gifs/leonardo-dicaprio-catch-me-if-you-can-
5leocharacters-t1h4nnWEWKfn2

https://33milesinnewaygocounty.files.wordpress.com

https://thechive.files.wordpress.com

Discriminator

Generator
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Generative Adversarial 
Networks

● Typical use cases:

– mainly generation of photo quality fake images (i.e. of celebrities)

https://arxiv.org/abs/1710.10196

https://arxiv.org/pdf/1612.00005v1.pdf
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Generative Adversarial 
Networks

● Extending the GAN architecture – provide a set of initial 
parameters for the generator and discriminator:

– generator would not generate a random output, but a customized one

– in our case: initial momenta of Monte Carlo particles

48

https://giphy.com/gifs/leonardo-dicaprio-catch-me-if-you-can-
5leocharacters-t1h4nnWEWKfn2

https://33milesinnewaygocounty.files.wordpress.com

https://thechive.files.wordpress.com

Discriminator

Generator

Initial Parameters
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TPC clusters with GANs
● It is not (yet!) possible to generate the full 3D image of the event at 

once (especially in the Pb-Pb event)

● Our solution is to:

– generate clusters for single particles

– two separate flows for spatial coordinates (x,y,z) and the energy

– in the beginning focus  only on 3D coordinates

– merge generated samples (individual particles) into full images

– training of the GAN on original full simulations
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Example results
proton kaon

Original 
event

GAN event
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Results
● Mean Squared Error (MSE) from the original helix as a quality 

measure

● Evaluation conducted on the separate test-set with ~15000 tracks
MSE visualisation:
Red - error
Grey- ideal helix
Orange – original clusters
Blue – generated clusters

Method
Mean MSE 

(mm)
Median MSE 

(mm) Speed-up

GEANT3 1.20 1.12 1

Random 
(estimated)

2500 2500  N/A

condLSTM GAN 2093.69 2070.32
100

condLSTM GAN+ 221.78 190.17

condDCGAN 795.08 738.71
25

condDCGAN+ 136.84 82.72
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Computational cost
● Performance test conducted on the standalone machine with Intel 

Core i7-6850K (3.60 GHz) CPU using single core and no GPU

● Additional order of magnitude speed-up for GAN models with 
nVidia Titan Xp GPU
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