

WARSAW UNIVERSITY OF TECHNOLOGY

PID in ALICE with Machine Learning

Łukasz Graczykowski¹
Maciej Buczyński¹, Michał Glinka²

¹ Faculty of Physics

² Faculty of Electronics and IT

Machine Learning and Quality Control in ALICE CERN
4 December 2018

Goals of the data science group at WUT

- Use ALICE and its data as a unique environment to advance the Machine Learning field of science
- Identify areas where both ALICE (or HEP in general) and ML communities can mutually benefit
- More focus on Machine Learning research rather than simple implementations of standard ML tools for ALICE use cases
- Disclaimer:
 - I'm a physicist without a ML expertise
 - My task is to guide and coordinate the work of WUT
 ML computer scientists within ALICE

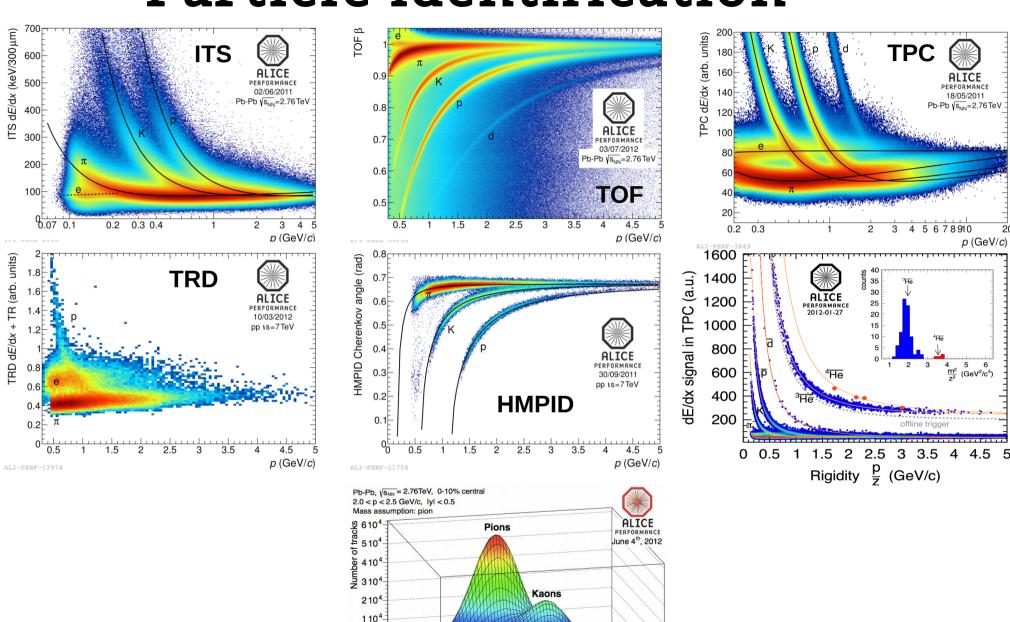
Three areas of research

- Data Quality Assurance prediction of detector quality label assignment
 - covered by Kamil Deja
- Simulation of TPC clusters in Monte Carlo data using generative networks
 - not covered this week
- Development of more precise particle identification (PID)
 - scope of this talk

Particle identification

- Particle identification (PID) is one of the most important steps in many physics analyses
- Crucial for Quark-Gluon Plasma measurements
- PID is one of the strongest advantages of ALICE:
 - practically all known techniques used (dE/dx energy loss, time-offlight, Cherenkov radiation for hadrons and transition radiation for electrons)
 - possibility to identify (anti-)nuclei
 - very good separation of pions, kaons, protons, electrons over a wide momentum range
 - separation of signals of charged hadrons and electrons for very low momenta (down to 0.1 GeV/c)

Particle identification



Protons

 $dE/dx^{TPC} - \langle dE/dx_{\pi}^{TPC} \rangle$ (a.u.)

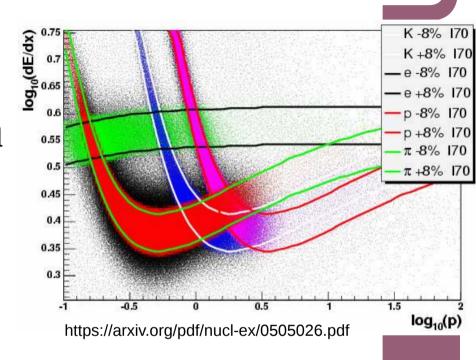
Traditional vs ML PID

Traditional PID:

- a typical analyzer selects particles
 "manually" by cutting on certain
 quantities, like the number of standard
 deviations of a signal from the expected
 value
- most limitations come in the regions where signals from different particle species cross
- "cut" optimization is a time-consuming task

Machine learning PID:

- perfect task for machine learning
- can learn non-trivial relations between different track parameters and PID
- no "trial and error" approach



Proposed solution for PID

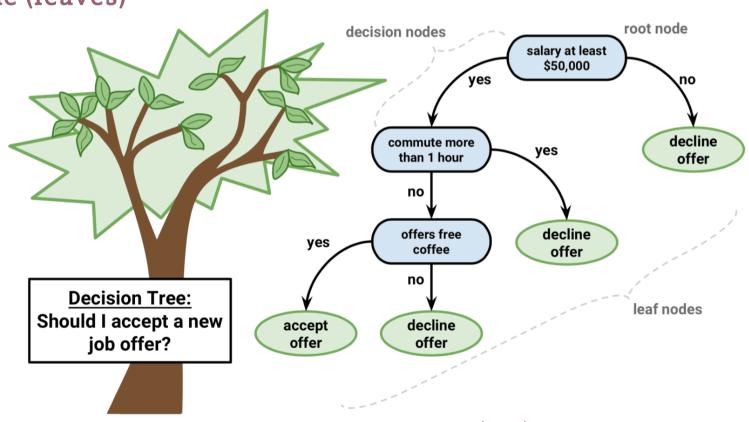
- Build a ML classifier that can outperform traditional PID
- Train and validate the classifier on Monte Carlo and real data
- Create a simple interface for users in AliRoot
- In the first step use AOD files and AOD tracks for classification as the users do while manually setting their cuts

• Limitations:

- Quality of the classifier will depend on the MC sample (discrepancies between data and MC)
- No easy way to calculate systematic uncertainties from the procedure
- The classifier is a "black box" no easy way to tell what's going on inside

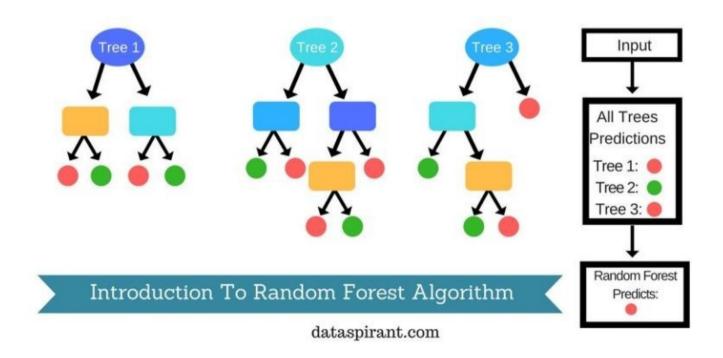
Decision tree

- A decision tree is a tree where each node represents a feature (attribute), each link (branch) represents a decision (rule) and each leaf represents an outcome (categorical or continues value)
- Decision tree learning uses a decision tree to go from observations about an item (attributes) to conclusions about the item's target value (leaves)



Random Forest

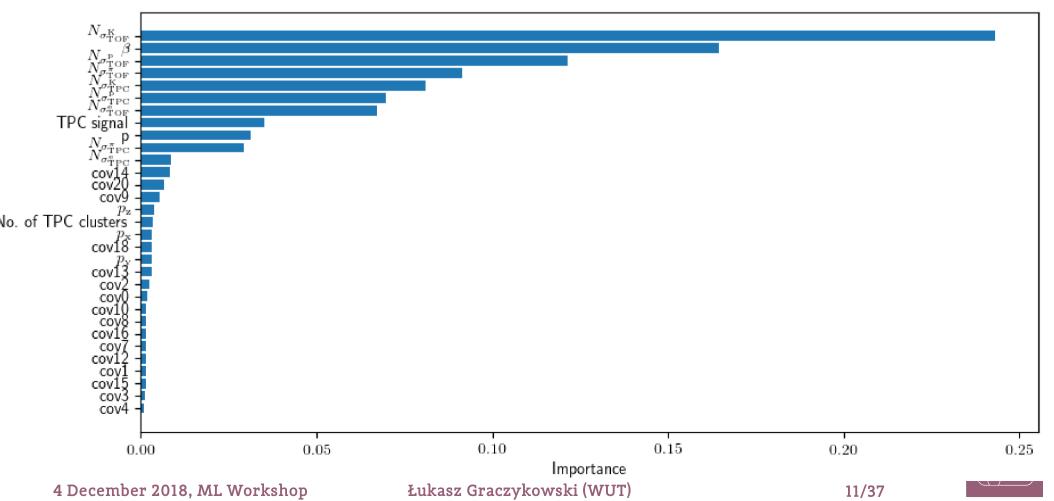
- A collection of decision trees ("forest") where each tree votes for a final decision
- Each tree is trained on a subset of <u>randomly</u> selected training data
- The final result is (in most cases) the one with majority of votes
- ... in addition, adaptive boosting was used



Let's see some results

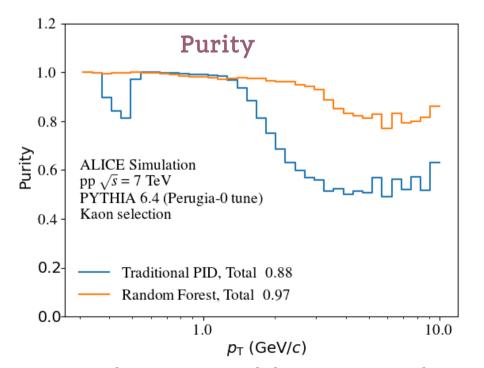
PID parameter importance

- Focus on kaons
- Input parameters were reduced to the most significant ones
- Importance of AOD track parameters their contribution to the final result (kaon selection)



Results - kaon selection

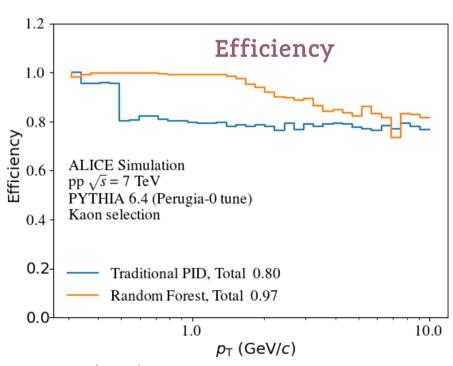
- Test data sample:
 - pp @ 7 TeV, Pythia 6 Perugia-0
- Traditional PID:
 - $n_{\sigma,TPC}^2$ <2, for p_T ≤0.5 GeV/c
 - $\sqrt{n_{\sigma,TPC}^2 + n_{\sigma,TOF}^2}$ < 2, for p_T > 0.5 GeV/c
 - veto on other particles



Efficiency

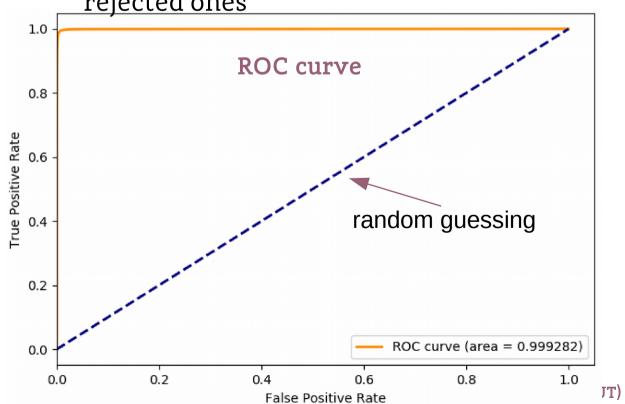
$$arepsilon_{Total} = rac{N_{primaries}^{survived-all-cuts-including-PID}}{N_{primaries}^{generated}}$$

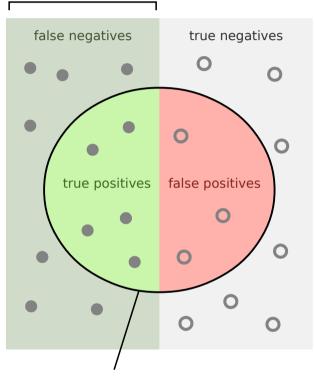
Purity = 1 - C
 C - contamination
 (fraction of correctly identified)



ROC curve (kaons)

- Receiver Operating Curve (ROC) it's a plot of true positive rate (TPR) vs false positive rate (FPR)
- Statistical measures of a classifier:
 - "Sensitivity" (=TPR), proportion of correctly identified → in our case it's simply purity
 - "Specificity" (=1-FPR), proportion of correctly
 rejected ones





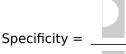
selected elements

How many relevant items are selected? e.g. How many sick people are correctly identified as having the condition.

relevant elements

Sensitivity=

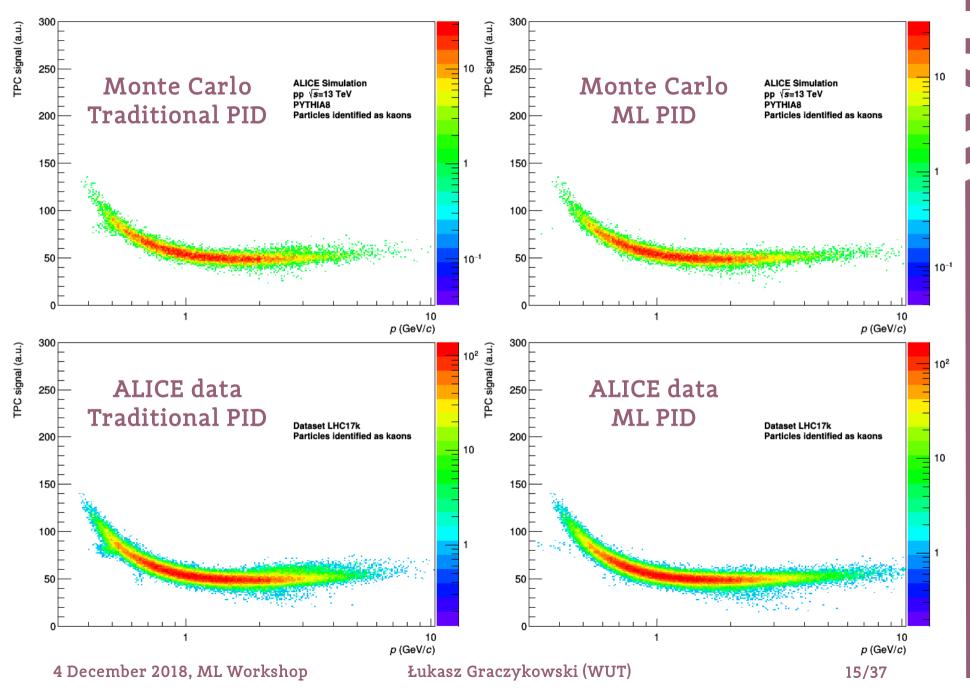
How many negative selected elements are truly negative? e.g. How many healthy peple are identified as not having the condition.



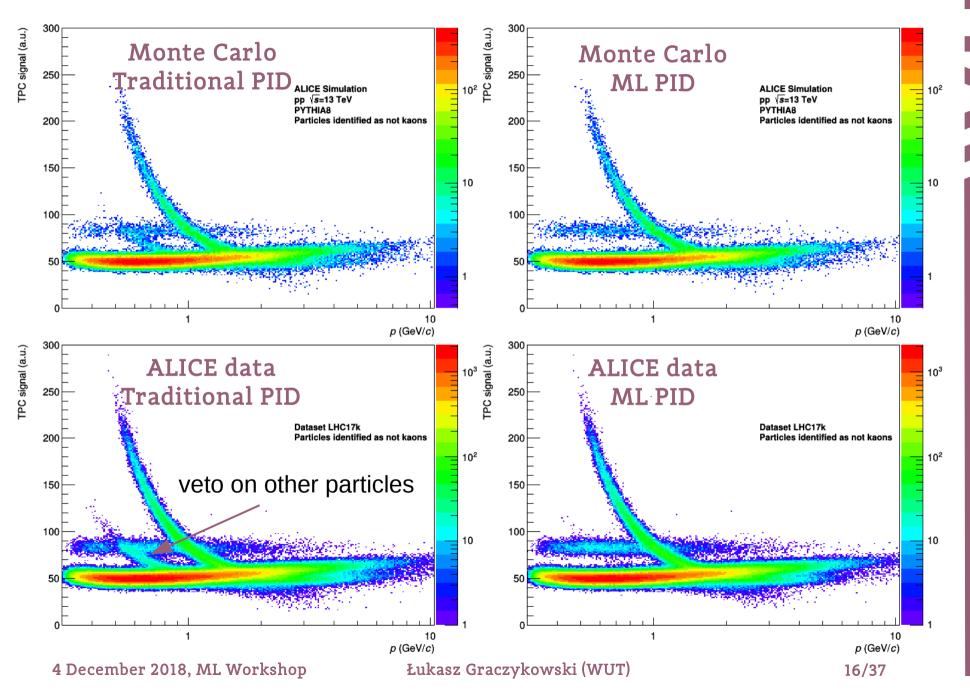
Monte Carlo and data

- So far we've seen the results of the classification on MC data only
- How does it actually correspond to experimental data?
- Can we use the classifier in a real analysis?
- Let's see the TPC dE/dx and TOF beta plots for experimental data and Monte Carlo

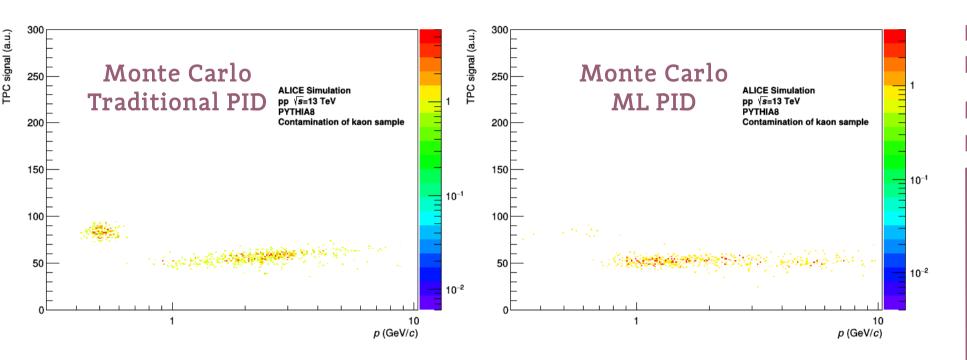
TPC accepted kaons



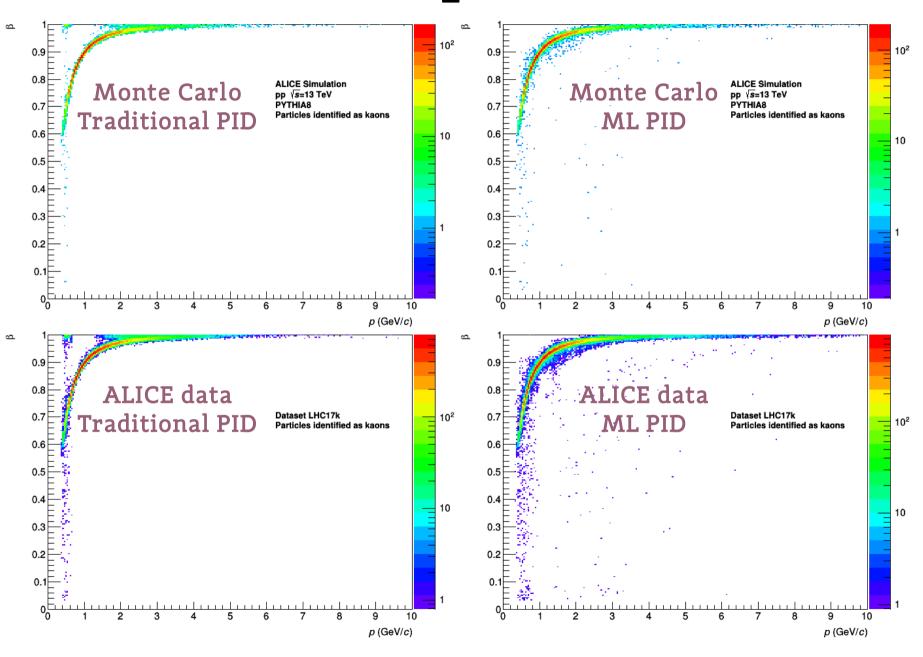
TPC rejected (not kaons)



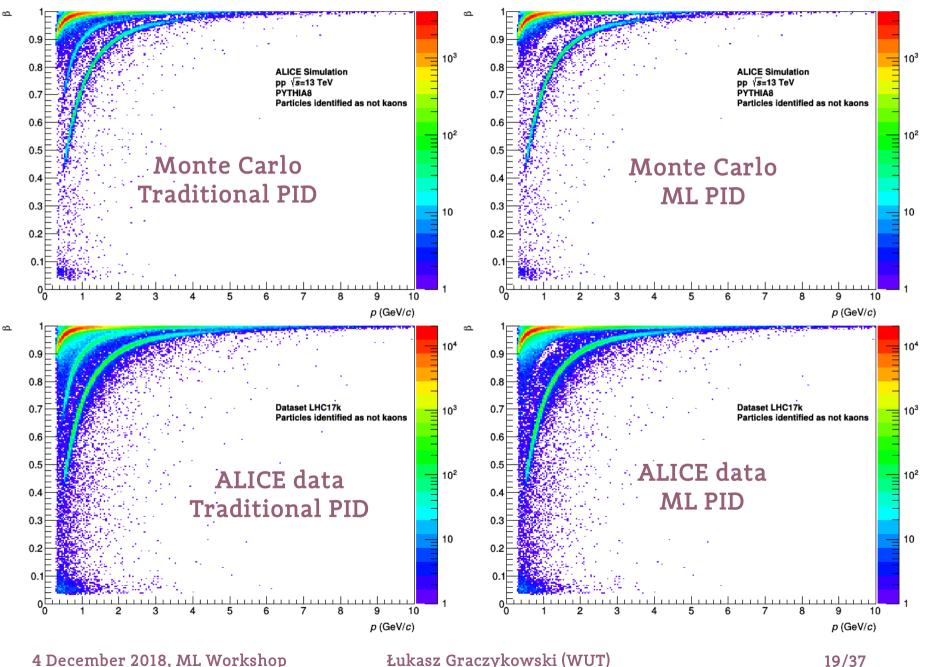
TPC contamination (kaons)



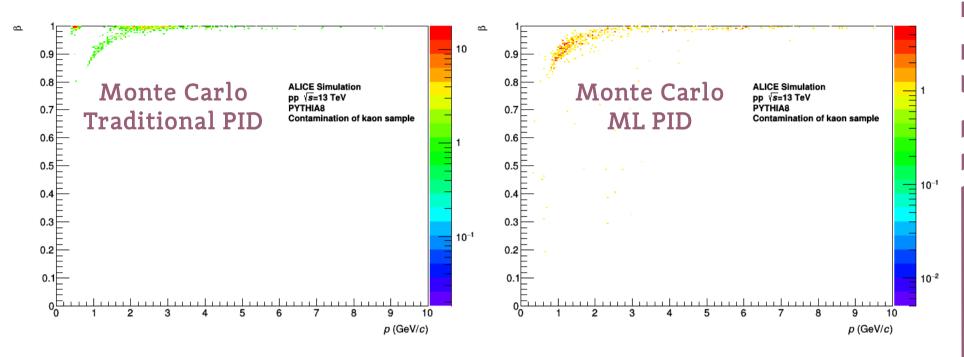
TOF accepted kaons



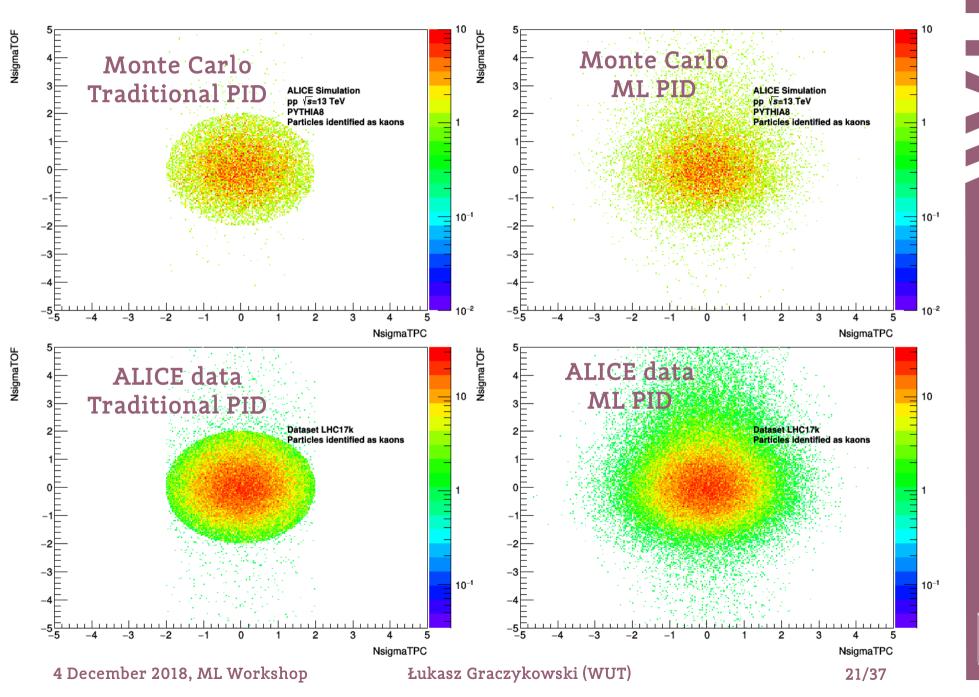
TOF rejected (not kaons)



TOF contamination (kaons)



TPC vs TOF accepted kaons



TPC vs TOF accepted kaons



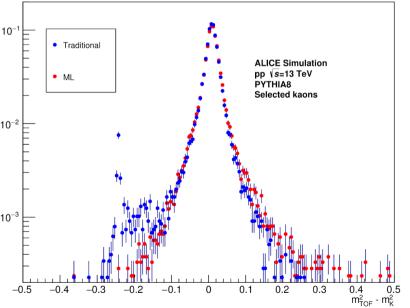
TOF time

 From our point of view TOF has a fantastic feature of a possibility to calculate mass of the recorded particle and compare it to the one from PDG

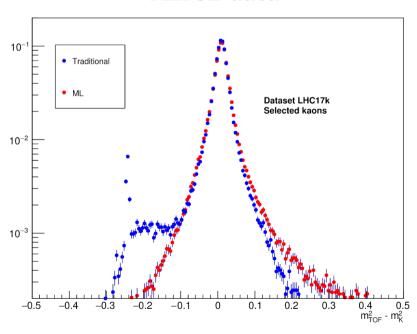
$$m_{TOF}^2 = p^2 \left(\frac{1}{\beta} - 1\right)$$

Thanks to that we can test contamination independently of MC simulations

Monte Carlo



ALICE data



Implementation in AliRoot

Implementation

Training part

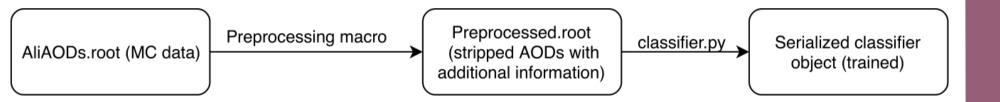
- Not covered in this talk
- Service work by Aaron Capon (SMI Vienna)
- Proposed solution: to be done in a centralized way

Classification part

- Classifier prepared by Michał Glinka, an IT student
- Work by Maciej Buczyński, a physics student
- Different attempts tested during Maciej's three summer months at CERN this year
- Demo/beta version already works

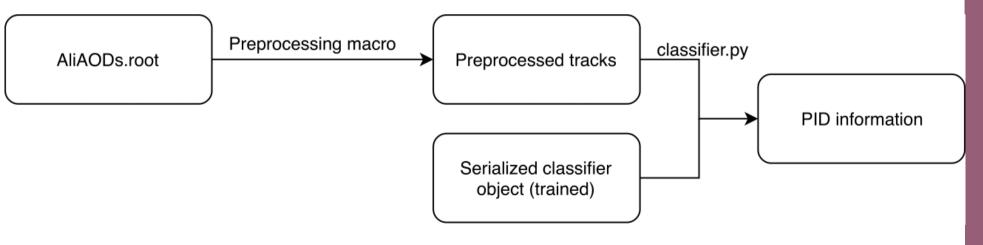
Classifier

• We get the trained classifier in a Python format (serialized classifier object) via the Python procedure (classifier.py)



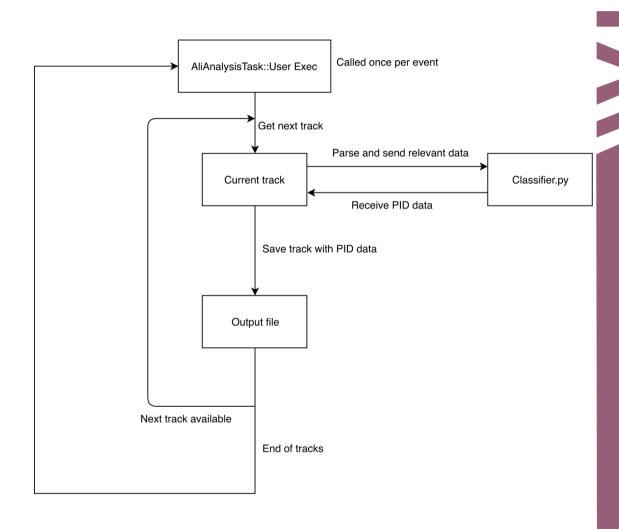
Classification - general idea

- Get the tracks (from AOD files) and the trained model in Python
- Propagate AOD tracks through the model
- The ML PID information consists of a PDG code of the predicted particle and probabilities for other PDG codes
- Present the information to the user
 - via new AliMLPIDresponse task and AliMLPIDUtil object



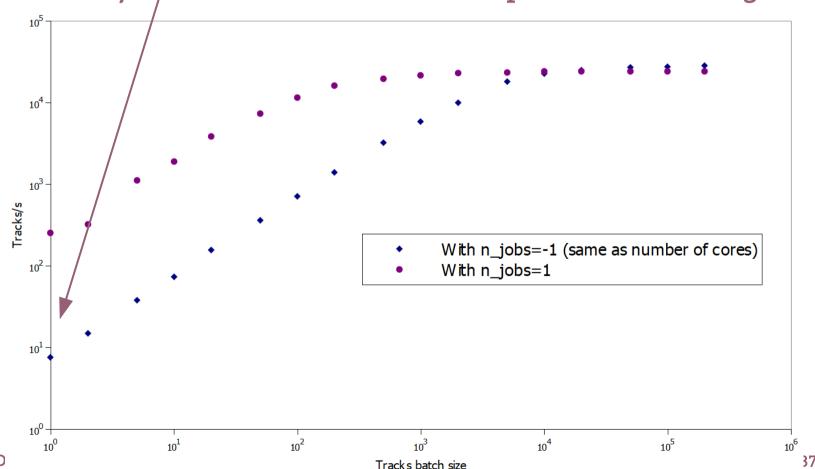
First attempt

- Track-by-track implementation
- Framework to iterate over events, loop over tracks in UserExec
- Classifier listens in the background
- Stripped files sent via pipe
- PID results received via another pipe
- The method is VERY SLOW



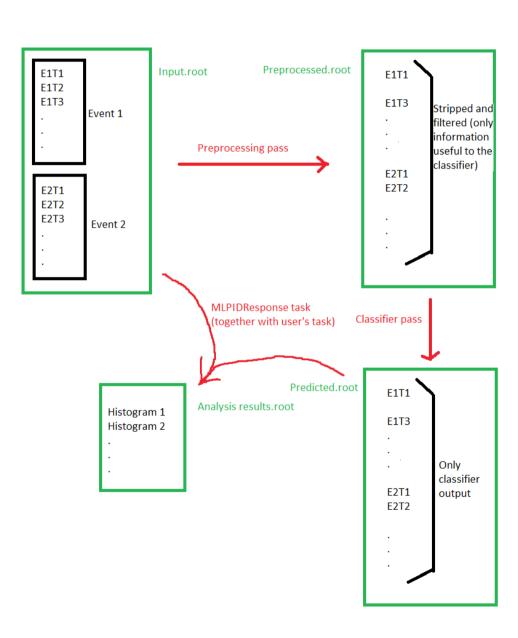
Scikit-learn benchmark

- In default track-by-track implementation, with threads, we can process only ~9 tracks/s (overhead from the thread creation) → no multiple threads allowed on the GRID
- Increase to more than 100 tracks/s if we do not allow threads
- Not very much difference with multiple tracks wrt single track



Second attempt

- Propagate multiple tracks through classifier
- <u>Two loops</u> over events needed
- No easy way in AliRoot:
 - create a temporary (stripped) file
 - propagate the temporary file through the classifier
 - produce predicted.root file
- In the second loop over events use a lookup table to match the two files



Third attempt idea

- Since there is no need to change the classifier by users, one can centralize the classification part as well
- Run the classification once (for example together with reconstruction pass or AOD creation) and store the classifier for every run
- Users would access the already existing ML PID attributes for a given run
- But... this also has some drawbacks:
 - no possibility to modify the classifier by the user
 - reliable Monte Carlo has to be ready before
 - no easy way to pair up events globally (see next slide)

Event pairing problem

How can we pair events from predicted.root with the ones a user gets in his/her analysis from the framework?

- The predicted.root file consists of only those tracks for which PID information was available
- Tracks are not necessarily in the same order
- A track identification within the event is easy (track->GetID())...
- ... but no variable to identify tracks within the AOD file (across multiple events)
 - candidates like fTimeStamp or GetEventIDAsLong (combines period, orbit, and bunch id) may work with real data, but not present in MC

Our current proposal

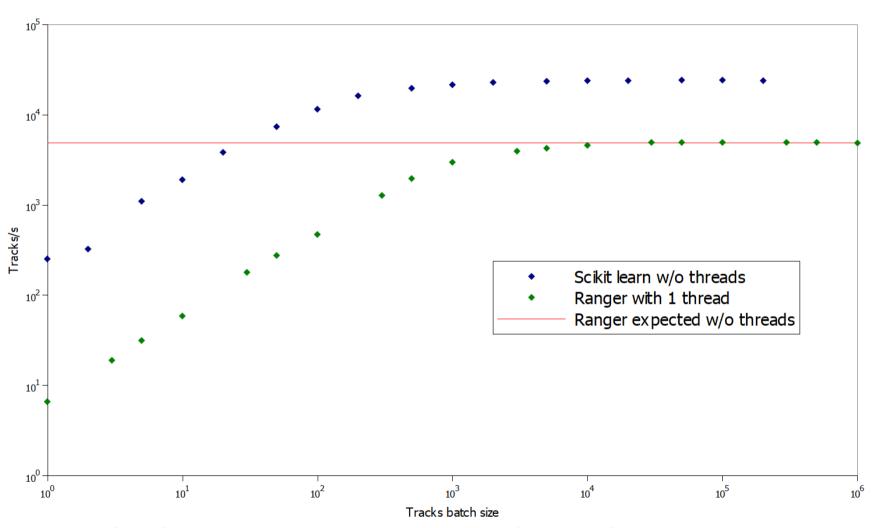
- Propagate multiple tracks through the classifier combined from single events (do not combine multiple events)
 - computational time of a simple p_T analysis task with ML PID (scikit-learn) and without ML PID (one 200 MB AOD file):

Real time 0:00:34 --- Without ML PID

Real time 0:01:33 --- With ML PID

- the analysis with ML PID is 3x slower than without ML PID
- If providing a framework in Python is not possible now, use the C++ Random Forest library (for example Ranger) instead of Python
- First tests:
 - created a "random" C++ Random Forest of the same size and depth
 - compare Ranger and scikit-learn speed tests (next slide)

Scikit-learn vs Ranger



- Ranger (C++) is slower than scikit-learn (Python) → Python is faster
- Ranger creates threads even when set to 1 we expect a speed up when removing that

Working demo/beta example

LZJ

126

127 128 129

130

131

132

133 134 135

136

137

138

139

141

142

1.43

144

1.45

146

147

148

149

150

151

152

```
AliAnalysisTaskMLPt *myTask = new AliAnalysisTaskMLPt("MyTask");
   AliAnalysisTaskMLPIDResponse *mlpidTask = new AliAnalysisTaskMLPIDResponse("MLPIDTask"):
   mvTask->SelectCollisionCandidates(AliVEvent::kINT7):
   if(!myTask)
   exit(-1):
   mgr->AddTask(mlpidTask);
                                              run macro
   mgr->AddTask(myTask);
   // Create containers for input/output
   AliAnalysisDataContainer *cinput = mgr->GetCommonInputContainer();
   AliAnalysisDataContainer *coutput2 = mgr->CreateContainer("MyTree",
            TList::Class(), AliAnalysisManager::kOutputContainer, outfilename);
                                                                               user's analysis task
   //connect them to future analysis
                                               151
                                                        //loop over AOD reconstructed tracks
 mgr->ConnectInput(mlpidTask,0,cinput);
                                                        for (int t iTracks = 0; iTracks < aodEvent->GetNumberOfTracks(); iTracks++) {
                                               152
   //mgr->ConnectOutput(mlpidTask,1,coutput2);
                                               153
                                                             //get track
   mgr->ConnectInput(myTask,0,cinput);
                                               154
                                                             AliAODTrack *track = (AliAODTrack*)aodEvent->GetTrack(iTracks):
   mgr->ConnectOutput(myTask,1,coutput2);
                                               155
                                                             if (!track)
                                               156
                                                                  continue:
   if ( !mgr->InitAnalysis() )
                                               157
        return:
                                               158
                                                             UInt t filterBit = 96;
   mgr->PrintStatus();
                                               159
                                                             if(!track->TestFilterBit(filterBit))
                                               160
                                                                  continue:
   //start analysis
                                               161
   mgr->StartAnalysis("local", chain, Nevents);
                                                        if (!fMLpidUtil)
                                               162
                                               163
                                                           continue:
                                               164
                                               165
                                                        AliMLPIDResponse* resp = fMLpidUtil->qetTrackPIDResponse(track->GetID());
User just needs to add
                                               166
                                                        if (!resp)
                                               167
                                                           continue:
 a couple of lines - like
                                               168
                                                         else
                                               169
                                                           cout<<"Good PID: "<<resp->predictedPDG<<endl;
 for traditional PID
                                               170
                                               171
 response task
                                               172
                                                         int pdg = resp->predictedPDG;
                                               173
                                                         if(pda == 211)
                                               174
                                                           ptHistPions->Fill(track->Pt());
                                               175
                                                         if(pdq == 321)
                                                           ptHistKaons->Fill(track->Pt());
                                               176
                                               177
                                                         if(pdq == 2212)
                                                           ptHistProtons->Fill(track->Pt());
                                               178
                                               179
                                               180
                                               181
                                                             //save all attributes into TTree
```

//treeOutput->Fill();

182

183

4 December 2018, ML Workshop

Summary

Advantages:

- ML-based PID outperforms traditional PID, clearly seen in practically all tests
- training needed only once for each data set no need for manual cut optimizations

• Problems:

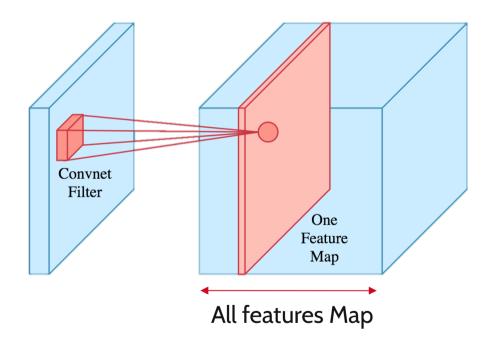
- Track-by-track implementation (optimal from our side) is very slow
- No global track id information (across multiple data files) stored both in real data and MC data needed to match files
- C++ ↔ Python connection is also a weak point

Thank you

Backup

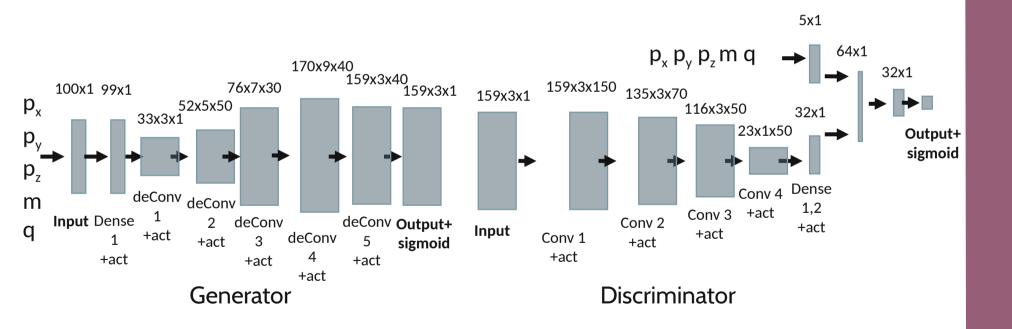
Deep Convolutional GAN

 Class of architectures which use the convolutional tools and deconvolutional layers – mostly used with images



condDCGAN: Conditional DCGAN

- Generator deconvolutional layers
- Discriminator convolutional layers
- Network conditioned on particle momenta, mass, and charge
- Output classification sigmoid function



condDCGAN+: combined loss

- Training on on the full MC simulations
- Preparing the noise from initial parameters of MC simulations
- Comparing the generated samples with original ones
- Combining origininal conditional GAN loss with the results of comparison

$$\mathcal{L}_{G}(m, X) = \mathbb{E}_{z \sim p_{z}(z|m)} [\alpha \log(1 - D(G(z))) + \beta \frac{1}{n} \sum_{i=1}^{n} (X_{i} - G(z)_{i})^{2}]$$

m - initial parameters (particle momenta),

X - original value corresponding to m,

p(z|m) - distribution of a noise vector under initial parameters m

z - input into a generator

G and D - generator and discriminator

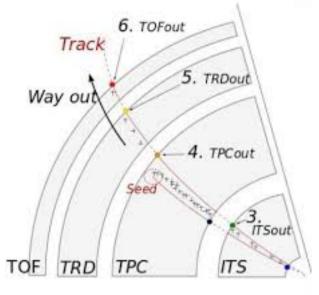
n - the number of produced clusters

Additional parameters α and β are used to weight the share of individual losses. Best performing values are α = 0.6 and β = 0.8

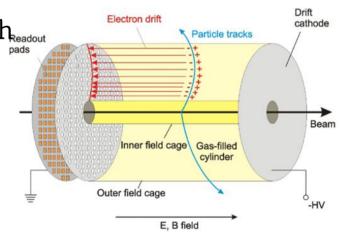
Simulation of TPC clusters in Monte Carlo data using generative networks

Time Projection Chamber

- Tracking in ALICE is performed by ITS, TPC, TRD and TOF
- First attempts focus on the <u>TPC only</u>:
 - main tracking device
 - located from 0.8 m (inner radius) to 2.5 m
 (outer radius) from the beam and extending
 ~2.5 m in each direction along the beam axis
 - volume of 95 m³
 - filled with Ne-CO₂ gas mixture (90%-10%)
 - clusters points in 3D space, together with the energy loss, which were presumably generated by a particle traveling through
 - provides up to 159 clusters per track



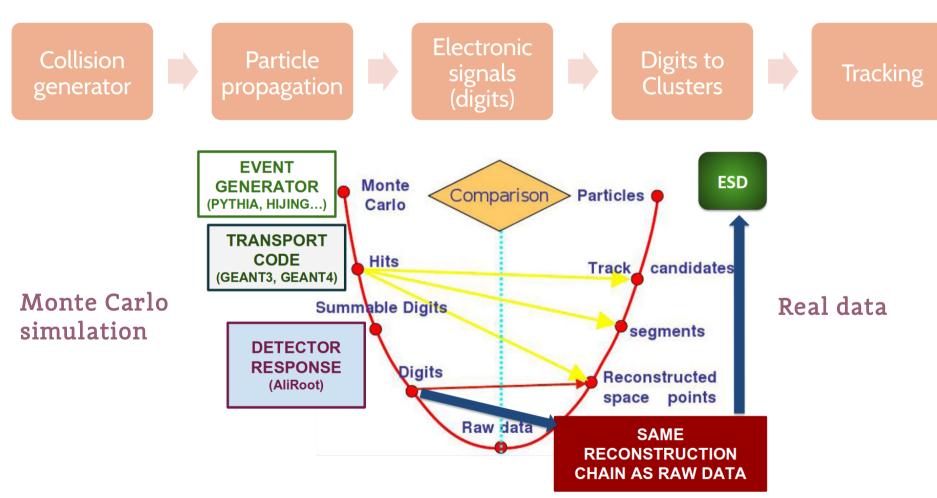
ALICE Data Preparation Group



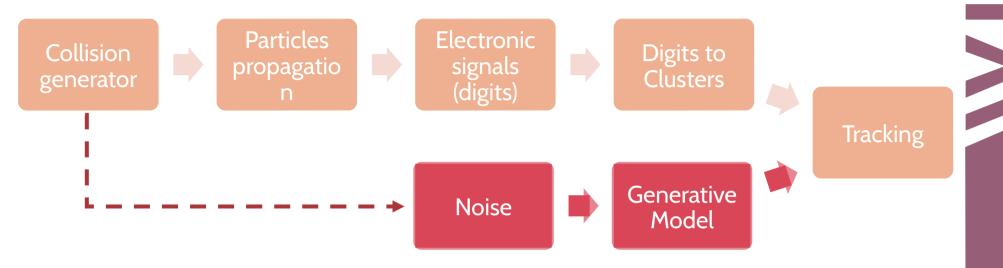
I.Konorov, Front-end electronics for Time Projection chamber

Simulation and reconstruction

- Current process relies on 5 independent modules
- The computationally most expensive module is particle propagation through the detector's matter



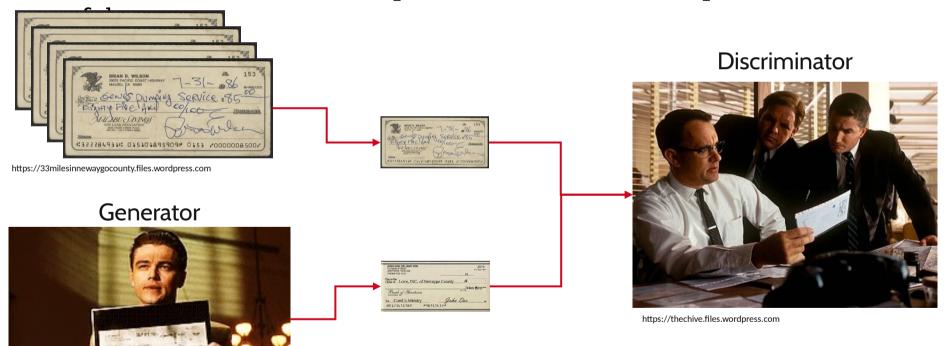
Simulation and reconstruction



- Generative solution for cluster simulation:
 - substitute the detector simulation and check for the speed-up
 - full simulation still needed to generate training samples
 - immediate drawback: quality of such MC data can be either comparable or lower than the full detector simulation – limits potential applications

Generative Adversarial

- Networks
 Generative Adversarial Network (GAN) is a neural network architecture of two networks competing with each other (playing a min-max game)
 - "Generator" is trained to produce fake data resembling the real data
 - "Discriminator" aims to predict whether an example data is real or





Generative Adversarial **Networks**

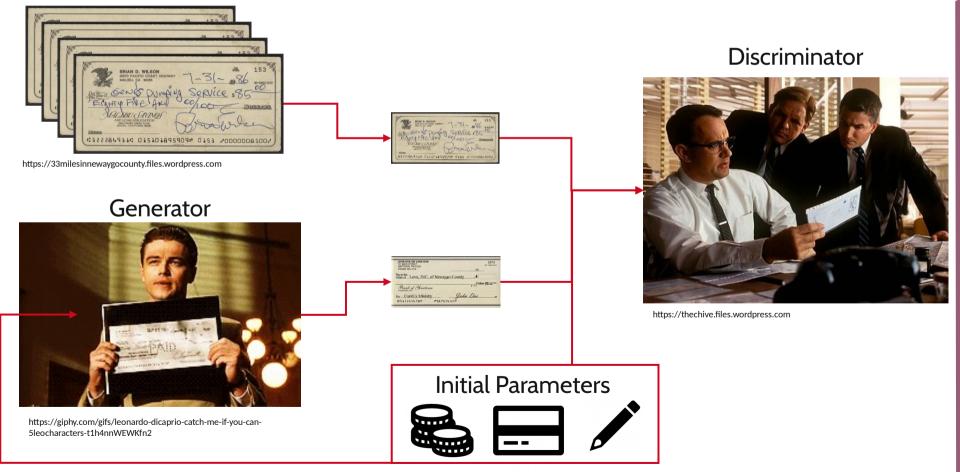
- Typical use cases:
 - mainly generation of photo quality fake images (i.e. of celebrities)

https://arxiv.org/abs/1710.10196

https://arxiv.org/pdf/1612.00005v1.pdf

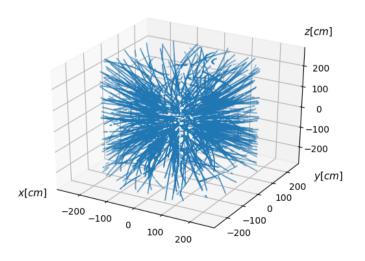
Generative Adversarial Networks Extending the GAN architecture – provide a set of initial

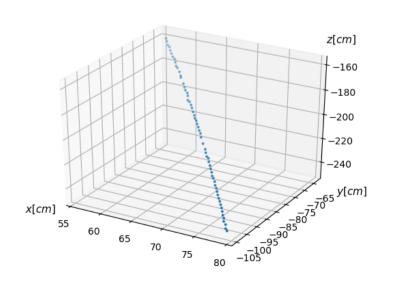
- Extending the GAN architecture provide a set of initial parameters for the generator and discriminator:
 - generator would not generate a random output, but a customized one
 - in our case: initial momenta of Monte Carlo particles



TPC clusters with GANs

- It is not (yet!) possible to generate the full 3D image of the event at once (especially in the Pb-Pb event)
- Our solution is to:
 - generate clusters for single particles
 - two separate flows for spatial coordinates (x,y,z) and the energy
 - in the beginning focus only on 3D coordinates
 - merge generated samples (individual particles) into full images
 - training of the GAN on original full simulations

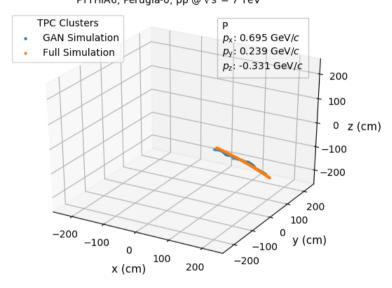




Example results

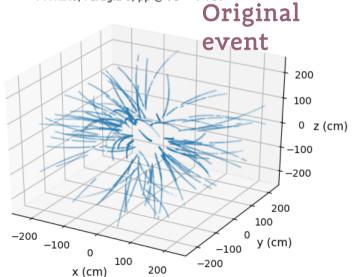
proton

ALICE Simulation PYTHIA6. Perugia-0. pp @ \sqrt{s} = 7 TeV

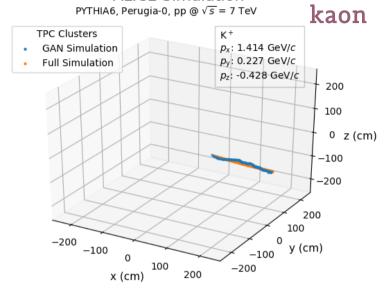


ALICE Simulation

PYTHIA6, Perugia-0, pp @ \sqrt{s} = 7 TeV

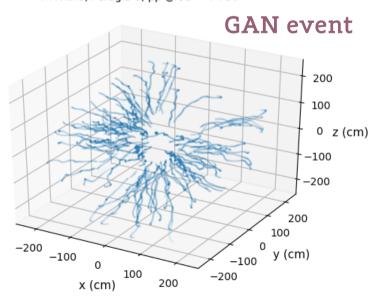


ALICE Simulation



ALICE Simulation

PYTHIA6, Perugia-0, pp @ \sqrt{s} = 7 TeV



Results

 Mean Squared Error (MSE) from the original helix as a quality measure

• Evaluation conducted on the separate test-set with ~15000 tracks

MSE visualisation:

Red - error

Grey- ideal helix

Orange - original clusters

Blue - generated clusters



Method	Mean MSE (mm)	Median MSE (mm)	Speed-up
GEANT3	1.20	1.12	1
Random (estimated)	2500	2500	N/A
condLSTM GAN	2093.69	2070.32	100
condLSTM GAN+	221.78	190.17	100
condDCGAN	795.08	738.71	25
condDCGAN+	136.84	82.72	25

Computational cost

- Performance test conducted on the standalone machine with Intel Core i7-6850K (3.60 GHz) CPU using single core and no GPU
- Additional order of magnitude speed-up for GAN models with nVidia Titan Xp GPU

