
130th November 2018

ML framework and QC tools in ALICE.

Measure the uncertainty
Robust regression and model compression
MVA wrapper+AliNDFunctionInterface

 Marian Ivanov, Martin Kroesen

https://fairyonice.github.io/Measure-the-uncertainty-in-deep-learning-models-using-dropout.htm
l

https://fairyonice.github.io/Measure-the-uncertainty-in-deep-learning-models-using-dropout.html
https://fairyonice.github.io/Measure-the-uncertainty-in-deep-learning-models-using-dropout.html

230th November 2018

Outlook

N dimensional analysis pipeline in ALICE
(T)MVA interface wrapper (Python/C++)

● quantiles
● prediction/confidence intervals
● model compression

TMVA wrapper
● first example of user interface for MVA wrapper

Jupyter notebook tutorial:
● Example usage of the MVA interface in time series analysis
● Space point distortion time series, regression (sklearn.RandomForest,

KNN, Keras) with error predictions
● https://indico.cern.ch/event/766450/contributions/3225232/attachme

nts/1764699/2864482/distortionCheck0_2.html

https://indico.cern.ch/event/766450/contributions/3225232/attachments/1764699/2864482/distortionCheck0_2.html
https://indico.cern.ch/event/766450/contributions/3225232/attachments/1764699/2864482/distortionCheck0_2.html

312th September 2018 Marian Ivanov ROOT workshop 2018

Alice - Standard ND pipeline

Standard calibration/performance maps and QA done and interpreted
in multidimensional space

● dimensionality depends on the problem to study (and on available resources)
● Data →Histogram → set of ND maps → set of NDlocal regression/MVA → Global

fits
● Some steps can be skipped, e.g local regression (TMVA/AliNDLocal) can be done using

unbinned input data

Reconstruct
ed data
(ESD, AOD,
custom sampled
data)

Raw data

DCS (slow control)
data
(currents, voltage,
rates)

N
dimensional
histogram

Several N-1
dimensional
maps with
statistic:
mean, rms,
fit,cumulants,
quantiles

Local
regression:
AliNLocal
regression
(local kernel
polynomial
regression)
+
 MVA

Global
fits
physical
model or
parameter
ization

Visualization,
interactive
queries
web server
Jupyter(bokeh
+interactive)

Materialized
views
(aggregated
information):
QA summary
Logbook, calib DB)

MC data:
Kinematic, track
references,
sampled data with
MC true

430th November 2018

Alice - automatic alarms

 Aggregated summary data used as an input for automatic alarms
User defined alarm. Usually combination

● outliers - n sigma bands around “predicted value” (median,mean)
● “physically accepatable” performance
● logical &&, || of the state for sub-component

MVA algortihm/regression to be used to predict expected value
and error of

prediction

Status bar Status bar decomposition

530th November 2018

MVA AliNDFunctionInterface to machine learning

AliNDFunctionInterface : TMVA wrapper in ALICE analysis
framework AliRoot (C++ implementation usable aslo in Python)

● Simple and compact user interface
● similar to TTree::Draw and Histogram::Fit queries

● Store all the data as ROOT objects in ROOT files (instead of
weight files, no xml files)

● possibility to store data in Alice calibration DB
● Easy usage providing TFormula/TTreeformula interface

● possibility to combine/normalize/operate with other formulas (other TMVA,
global fits, NDimensional local tables (e.g AliNDLocalRegression object)

New wrapper (written in Python - to be interfaced also to C++)
● Local error estimates (reducible and irreducible errors) and

local robust estimators
● Combined/weighted evaluation, caching and model compression

(WORK IN progress)

Goal - make the usage of the MVA almost as easy as standard
fits in root

630th November 2018

Why Should we Care About Uncertainty?
https://fairyonice.github.io/Measure-the-uncertainty-in-deep-learning-models-using-dropout.htm
l

http://www.cs.ox.ac.uk/people/yarin.gal/website/blog_images/reg_demo_small.jpg

Example:
Alice example time series
flux, gas composition and
distortion

What is the prediction error
for non seen data ?

https://fairyonice.github.io/Measure-the-uncertainty-in-deep-learning-models-using-dropout.html
https://fairyonice.github.io/Measure-the-uncertainty-in-deep-learning-models-using-dropout.html
http://www.cs.ox.ac.uk/people/yarin.gal/website/blog_images/reg_demo_small.jpg

730th November 2018

Confidence/prediction intervals

Confidence Intervals for Scikit Learn Random Forests
● http://contrib.scikit-learn.org/forest-confidence-interval/
● https://github.com/scikit-learn-contrib/forest-confidence-interval
● forestci package

● This package adds to scikit-learn the ability to calculate confidence intervals of the predictions generated
from scikit-learn

Neural network prediction:
● 1: Delta method
● 2: Bayesian method
● 3: Mean variance estimation
● 4: Bootstrap

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
(https://arxiv.org/abs/1506.02142 - 2015)

● test-time dropout can be seen as Bayesian approximation to a Gaussian process related
to the original network

Bootstrap approach
● provides “prediction” intervals for all methods

Currently not standard libraries to estimate reducibble and irreducible error of
the ML models.

http://contrib.scikit-learn.org/forest-confidence-interval/
https://github.com/scikit-learn-contrib/forest-confidence-interval
https://arxiv.org/abs/1506.02142

830th November 2018

Quantile regression and prediction intervals

Most estimators during prediction return E(Y|X), which can be
interpreted as the answer to the question, what is the
expected value of your output given the input?

● Quantile methods, return y at q for which F(Y=y|X)=q where q is
the percentile and y is the quantile.

Quantile regression forest:
● https://scikit-garden.github.io/examples/QuantileRegressionForests/

Deep Quantile Regression
● Quantile Regression Loss function (March 2018)
● https://towardsdatascience.com/deep-quantile-regression-c854815

48b5a

Currently not standard libraries to estimate reducibble and irreducible error of
the ML models.

https://scikit-garden.github.io/examples/QuantileRegressionForests/
https://towardsdatascience.com/deep-quantile-regression-c85481548b5a
https://towardsdatascience.com/deep-quantile-regression-c85481548b5a

930th November 2018

Ensemble method (work in progress)

Combination of the different methods based on the local error
properties

● Problem to solve - significant extrapolation error in some
local regions

● e.g KNN conservative extrapolation less sensitive than BDT and
Random forest

● local error estimate using methods from previous slides
● combine methods using weighted average

Speed up MVA evaluation using caching:
● In case of small number of dimensions tabulated kernel local

regression (AliNDLocalRegression)
● In case of multidimensional problem cache “results” and feed it into

fast methods (Neural network?)

1030th November 2018

Model compression - KERAS

An ensemble is a collection of models whose predictions are combined by weighted
(local) averaging or voting.

● Well known ensemble methods include bagging[2], boosting [14], random forests[3],
Bayesian averaging [9] and stacking [17].

Ensembles - disadvantage: many ensembles are large and slow

Goal: compress the function that is learned by a complex model into a much smaller,
faster model that has comparable performance (within prediction intervals)

● To be used in reconstruction
● The main idea behind model compression is to use a fast and compact model to

approximate the function learned by a slower, larger, but better performing model.
● Unlike the true function that is unknown, the function learned by a high performing

model is available and can be used to label large amounts of pseudo data.

Current assumption: KERAS to be used as an compression model.
Problem - current ROOT interface too slow. Need to speed up evaluation.

● lwtnn library investigated

https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf

1130th November 2018

AliNDFunctionInterface

1212th September 2018 Marian Ivanov ROOT workshop 2018

AliNDFunctionInterface TMVA usage

Step 1: Register methods
Step 2: Register factory
Step 3: Fit Method(s)
Step x: Compress model
Step 4: Load /Register reader
Step 5: Eval MVA as an formula

1330th November 2018

Step 1: Register (regression/classification) methods

AliNDFunctionInterface::registerMethod() with parameters:
● std::string method: assign name
● std::string content: method registration string used in TMVA
● TMVA::Types::EMVA: type within TMVA

Example:

Experts provide default methods (for particular categories of problems)
● In example experts provided function MLPBNN as equivalent of

other function (e.g gauss or exp functions)

AliNDFunctionInterface::registerMethod("MLPBNN", "H:!
V:NeuronType=tanh:VarTransform=N:NCycles=20:HiddenLayers=N+5:Te
stRate=5:TrainingMethod=BFGS:UseRegulator",TMVA::Types::kMLP);

1430th November 2018

Step 2: Register factory

AliNDFunctionInterface::registerFactory() with parameters:
● std::string factory: assign name
● std::string content: string used in PrepareTrainingAndTestTree() to

define sample size etc.
● If empty or unavailable: use default settings

Example:

Experts provide default methods

AliNDFunctionInterface::registerFactory("testFactory",
"nTrain_Regression=50%:nTest_Regression=50%:SplitMode=Random:No
rmMode=NumEvents:!V");

1530th November 2018

Training and testing for Regression provided by:
AliNDFunctionInterface::FitMVARegression()

Parameters:
● const char * output: output root file and directory separated by “#”
● TTree *tree: input tree
● const char *varFit: variable to fit in regression separated by “:”
● TCut cut
● const char * variables: variables used for training
● const char *methods: previously registered method names
● const char * factoryString: previously registered strings to define

sample for training and testing

Step 3: Fit Method - Regression

AliNDFunctionInterface::FitMVARegression("TMVA_RegressionOutput.root#tes
t",regTree,"fvalue","var1>3","var1:var2","MLPBNN:BDT","test_factory")
;

Int_t AliNDFunctionInterface::FitMVARegression(const char *
output, TTree *tree, const char *varFit, TCut cut, const char *
variables, const char *methods,const char * factoryString);

1630th November 2018

Step 3: Fit Method Regression

Interface:

Example:

AliNDFunctionInterface::FitMVARegression("TMVA_RegressionOutput.ro
ot#test",regTree,"fvalue","var1>3","var1:var2","MLPBNN:BDT","te
st_factory");

Int_t AliNDFunctionInterface::FitMVARegression(const char *
output, TTree *tree, const char *varFit, TCut cut, const char *
variables, const char *methods,const char * factoryString);

1730th November 2018

Step 4: Load /Register reader

Load TMVA Reader via AliNDFunctionInterface::LoadMVAReader()

Weights from xml file and variables are stored to root file before and
are loaded via LoadMVAReader to apply the methods to
independent data

Parameters:
● Int_t id: to identify booked reader
● const char * inputFile: root file where parameters are stored
● const char *method: method to be booked
● const char *dir: directory of stored method

Example:

AliNDFunctionInterface::LoadMVAReader(0,"TMVA_Output.root","PyRand
omForest","cleanK0");

1830th November 2018

Step 5: Eval MVA as an formula

Evaluate MVA (variadic function)
● TMVA mathod to be loaded (regisetered using id) before
● EvalMVA(int id, T v, Args... args); (Regression)
● EvalMVAClasification(int id, T v, Args... args);(Classification)

Parameters: Reader ID (usually registered using hash value) and variables

Example usage:
● register TMVA as an function in tree and use it in queries

treeMVA -

>SetAlias("BDTRF","AliNDFunctionInterface::EvalMVAClassificatio
n(2,errChi2,v0ErrM,pointAngleN,mpt,armV0S,fRr+0)");

treeMVA->Draw("K0Delta>>hist(100,-0.1,0.1)","BDTRF>0")

1930th November 2018

Step 5: Eval MVA as an formula

Example:

treeMVA -
>SetAlias("BDTRF","AliNDFunctionInterface::EvalMVAClassificatio
n(2,errChi2,v0ErrM,pointAngleN,mpt,armV0S,fRr+0)");

treeMVA->Draw("K0Delta>>hist(100,-0.1,0.1)","BDTRF>0")

2030th November 2018

Conclusion

N dimensional analysis pipeline in ALICE
(T)MVA interface wrapper

● quantiles
● prediction/confidence intervals
● model compression

TMVA wrapper
● MVA regression almost as simple as gaussian fit

New MVA wrapper
● Work in progress
● See Jupyter notebook demo - ML based anaysis of the time

series 0distortion data

2130th November 2018

Backup

2230th November 2018

Step 3: Fit Method - Classification

Training and testing for classification provided by:
AliNDFunctionInterface::FitMVAClassification()

Parameters:
● const char * output: output root file and directory separated by “#”
● const char *input_trees: root file and tree separated by “#” - the trees

define the classes
● const char *cuts: cuts for each tree separated by “:”. If only one tree

available, the cuts define the classes
● const char * variables: variables used for training
● const char *methods: previously registered method names
● const char * factoryString: previously registered strings to define sample for

training and testing

Example:
Int_t AliNDFunctionInterface::FitMVAClassification(const char *

output, const char *inputTrees, const char *cuts, const char *
variables, const char *methods, const char * factoryString)

AliNDFunctionInterface::FitMVAClassification("TMVA_Output.root#clean
K0","TMVAInput.root#MVAInput","cleanK0:isBackground","errChi2:v0Er
rM:pointAngleN:mpt:armV0S:fRr","BDTRF:PyRandomForest:KNN","");

2330th November 2018

Step 3: Fit Method - Classification

Interface:

Example one tree:

Example multiple trees:

Int_t AliNDFunctionInterface::FitMVAClassification(const char *
output, const char *inputTrees, const char *cuts, const char *
variables, const char *methods, const char * factoryString)

AliNDFunctionInterface::FitMVAClassification("TMVA_Output.root#clea
nK0","TMVAInput.root#MVAInput","cleanK0:isBackground","errChi2:v
0ErrM:pointAngleN:mpt:armV0S:fRr","BDTRF:PyRandomForest:KNN","")
;

AliNDFunctionInterface::FitMVAClassification("TMVA_Output.root#clea
nK0","TMVAInput.root#MVAInput1:TMVAInput.root#MVAInput2","","err
Chi2:v0ErrM:pointAngleN:mpt:armV0S:fRr","BDTRF:PyRandomForest:KN
N","");

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

