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Overview of the talk

« Some ideas for ALICE:
- An overview of the ML common framework
« HF selection
- Jet tagging (gluon vs quark, b/c tagging)
 PID identification
* Nuclei/hyper-nuclei studies
- Data/MC reweighing



Some HI analysis already done with ML
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Many of the analyses | performed in CMS were already using BDT to improve the

statistical of the signal at low pr

- Extraction of the low pt B+ and Bs signal would not be possible at all without ML



Our project for heavy-ions in ALICE:
basic ideas and overview of the
ML framework



Overview of the ALICE project

Prerequisite: A new ML software based on the most recent packages like Scikit,
XGBoost and TensorFlow (python software with interface with ROOT framework)

Analysis developments: Reconstruction/calibration:

- use traditional models like BDT to
improve the precision of HI analysis
especially at very low pt (HF, b-jets,
hyper-nuclei, PID)

* ML and deep learning for improving
online calibration and corrections
(golden case: correction of TPC
distortions)

« Explore advantages of deep learning to
improve performances in cases where
low level features can be used (e.qg.
tracks or calorimeter clusters)

« Fast MC production

- DQM and data quality monitoring

- Develop new methods for MC-data
reweighing to produce more reliable
MC simulations in view of high
precision Run3 analysis



Overview of the ALICE project

Prerequisite: A new ML software based on the most recent packages like Scikit,
XGBoost and TensorFlow (python software with interface with ROOT framework)

Analysis developments:

- use traditional models like BDT to
improve the precision of HI analysis
especially at very low pt (HF, b-jets,
hyper-nuclei, PID)

« Explore advantages of deep learning to
improve performances in cases where
low level features can be used (e.qg.
tracks or calorimeter clusters)

- Develop new methods for MC-data
reweighing to produce more reliable
MC simulations in view of high
precision Run3 analysis



A new common framework for ML

Proving flexible tool to perform Machine Learning analysis. It includes:

- Common Ntuplizer for TTree creation that can run on the Grid using LEGO trains
(effort led by Andrea Festanti, important help from Markus/Jan for the LEGO part)

« ROOT to Pandas DataFrame conversion:
- convert the root TTree of MC and Data into Pandas data frames
» create training samples mixing MC and data
» create testing and training samples

- Training/Testing and common validation routines with Scikit/TensorFlow:
- implement most common ML algorithms and Deep Neural network for classification
using SciKit and TensorFlow
- Automatic validation with cross score validation, confusion matrix, learning curves,
ROC, etc et

- Testing on large samples for analysis and new TTree creation:
- new decision flag is added to the data frame
- a new TTree is created including flags and probabilities of all the ML algorithm
» Possibility of exporting the model in C++ for running testing on the Grid



What is included?

Several algorithms are already available:

- SVM

- Boosted Decision Trees and AdaBoost

- Random Forests

» Logistic regression

- Keras Deep Neural Networks
- Sequential Network
 Multi-Layer-Perceptron

Ready to perform:

1) Signal/Background classification for:
* Ds, D9, A¢, B+ Hypertritium..
- TPC/TOF PID
- jet tagging with high-level variables
2) Linear and non linear regression
3) A new tool for MC-data reweighing (discussed later)
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A C++ converter for ML models

- we developed a framework on an existing library to convert a python-trained DNN model
to C++ in order to be run on Grid.

- This package will allow to run the python-trained models on the Grid without the need of
producing ntuples for the entire dataset

1 LWTNN

NN prediction

« 100% match between the ROC curve obtained in python and the one obtained in C+
+ after converting the model to C++ !



An example of a standard
classification analysis®

* this is what you get automatically with the current framework
once you configure the handler to “digest” your TTree
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signal
background

Variable correlations

Pearson sgn: 0.44, Pearson bkg: 0.11
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Variable correlations
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- Study of correlation between variables is the first step to perform dimensional reduction
studies of the selection variables like Principal Component Analysis (PCA) etc 3



PCA and standardization

 You can automatically process the variables to performe Principal component analysis

and variable standardization
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Algorithm performance with cross-validation

training sample = subtraining + validation
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The study of the algorithm performance was performed with a standard 10-fold cross
validation method using as scoring function the RMSE of ML decision calculated with
respect to the signal/background flag. s



For each of the algorithm, we also had a look at the relative “importance” of the selection

Feature importance

features (~ the number of times a variable is used in the tree)
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the selection variables in the simple binary tree.



Grid Search: first studies

For a couple of algorithms, | started optimising the choice of the algorithm hyper-parameters

using the SciKit GridSearch method
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True Positive Rate or (Sensitivity)
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RMSE

RMSE

Learning curves
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Precision recall function
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Efficiency

Efficiency background

Efficiencies

GradientBoostingClassifier
Random_Forest

AdaBoost

Decision_Tree

02

0.4 0.6

Probability

0.8

1.0

Efficiency

1.0

0.8

0.2

0.0

Efficiency signal

GradientBoostingClassifier
Random_Forest

AdaBoost

Decision_Tree

0.0

0.2

0.4 0.6

Probability

0.8

21



Significance optimisation (work on going)

Signifi babilit:
FONLL cross section Ds 200 Ignificance vs probability

(A.U.)

gnificance

Si

oooooooo
Decision_Tree

15 20 25 30 . 0.0 0.2 0.4 0.6
pt Probability

- The code automatically loads a FONLL text file generated with FONLL website.

- Extract the signal in the proper pt range used for the optimisation

- Extract the number of background events in the testing sample

- Combine the signal and background with their efficiencies and extract the value of
significance as a function of the threshold on probability

* still need to implement proper estimation for number of background events (after

correcting for side band subtraction). Current significance normalization not realistic)
22



delta mass KK ML

delta mass KK ML
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Overview of the current activities

24



Open heavy-flavour measurements

* push open HF measurements down to
very low pt with more refined candidate
selection strategies (Ac,Ds ..)

 Optimize dedicated selection techniques
for minimizing errors on ratio of particles
(e.g. Ds/DO, Ac/DO, Ap/D0) with multi-class
classification algorithms. Not only
important for HF analysis

 Optimize selections to minimize
V(Ostat2+0sys2). In many Run3 analyses,
we will not be dominated by statistical
uncertainties anymore!
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Classification of open HF signals

- Several analyses already ongoing....
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DNN for HF reconstruction and selection
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Deep Neural Networks can also be used to:

- preselect tracks (with track parameters, PID raw info, etc) to reduce the input size

 even perform secondary vertex reconstruction starting from raw list of track (more
exploratory)

— very useful to have in Run3 e.g. tagged dataset of MB event with high HF content
to minimize the size of dataset for statistics-eager analysis like HF

https://indico.cern.ch/event/758025/contributions/3 144 178/attachments/1716918/2770284/slides_ArthurGal.pdf 27



Jet tagging

Low prt b-jets in PbPb and HF jet substructure are of the most interesting probe for

dead-cone and Ejoss.

* ptr <40 GeV is the region where
ALICE can be competitive since

CMS/ATLAS are limited by
trigger thresholds and JES

- New tagging techniques can be
developed in parallel with more
traditional CSV tagging
algorithms

- Similar algorithms can be used
for enhancing the fraction of
gluon vs quark jet and studying
parton dependence of Ejoss
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Quark vs gluon jet tagging

we started investigating the possibility of enhancing the fraction of quark jet by studying jet

shape variables.

signal
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« The idea is to start with standard and
DNN algorithm using engineered high-
level variables (like angularity etc) and
then move to more refined networks that
can use track as inputs

- first step to also develop c/b tagging
techniques.
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Eta_Rec_ML

JetMultiplicity Rec_ML

Quark vs gluon jet tagging

Studying distribution and 2D correlation of the most relevant variables is the starting point
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Signal defined as MC jets with parton PDG =1,2,3,4,5 (all quarks u,d,s,c,b,t)
Background defined as MC jets with all other PDGs
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Quark vs gluon jet tagging

Studying distribution and 2D correlation of the most relevant variables is the starting point

Receiver Operating Characteristic

True Positive Rate or (Sensitivity)

ROC ScikitTreeRandom_Forest (AUC = 0.72)
/ ROC ScikitTreeAdaBoost (AUC = 0.72)

ROC ScikitTreeDecision_Tree (AUC = 0.71)
/ ROC XGBoostXGBClassifier (AUC = 0.73)
ROC KerasSequential (AUC = 0.73)

0.4 0.6
False Positive Rate or (1 - Specifity)

We have already interesting “tagging” results &
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Nuclel and hypernuclel

- Optimise the selection strategy for (anti-)nuclei and (anti-)hypernuclei
- identify, account and correct for those produced in secondary processes

’g 500
Y R. E. Phillips and J. Schneps == Free A (PDG)
= i PR 180 (1969) 1307 3H World A
% 400 G. Keyes et al. AR Vvorid Average
— [ PRD 1 (1970) 66
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2 300! Science PLB 754 (2016)360 Pb-Pb |5,,=5.02 TeV
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LR. J. Prem and P. H. Steinberg
- PR 136 (1964) B1803
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Hypertritium optimization

Improve the selection strategy of the Hyper-tritium in pp collisions

XGBoostXGBClassifier Receiver Operating Characteristic
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Optimization of the PID selection

PID selection is one of the first areas where ML was applied in HEP

Several classification methods and
algorithms can be used. Main ideas:

* exploit correlation between track
parameters and PID variables

- use raw PID info instead of engineered
ones like nsigma

_

TPC dE/dx (arb. units

5

ALICE performance
Pb-Pb |sy, = 5.02 TeV

10
p/z (GeV/c)



Optimization of the PID selection

PID selection is one of the first areas where ML was applied in HEP

Receiver Operating Characteristic

ROC GradientBoostingClassifier (AUC = 0.95)

ROC Decision_Tree (AUC = 0.94)

E.g. list of selection variables:
- TPC, TOF signal

- track dca, sigma dca, chi2,

number of ITS hits, TPC hits ...

Work ongoing with TPC experts
(Jens, Marian) to identify the right
selection variables



Optimization of the PID selection

PID selection is one of the first areas where ML was applied in HEP

Receiver Operating Characteristic

E.g. list of selection variables:

- TPC, TOF signal

- track dca, sigma dca, chi2,
TPC PID kaon number of ITS hits, TPC hits ...

True Positive Rate or (Sensitivity)

Work ongoing with TPC experts
(Jens, Marian) to identify the right
roC e M09 selection variables

The elephant in the room....

- Having sizable Monte Carlo / Data
differences is THE problem in having
sophisticated PID selection

- the current tune-on-data “destroys” any
correlation with track variables

https://indico.cern.ch/event/766087/contributions/32 18852/attachments/1754285/2865669/

MCdatareweight.pdf



https://indico.cern.ch/event/766087/contributions/3218852/attachments/1754285/2865669/MCdatareweight.pdf
https://indico.cern.ch/event/766087/contributions/3218852/attachments/1754285/2865669/MCdatareweight.pdf

Who is working with us?

- B+*in pp/PbPb: L. Vermunt, L. Van Doremalen (Utrecht)

 PID: A. Kelweit, K. Lapidus (CERN), S. Hornung, A. Caliva, M. Ivanov (GSlI)

* Ds: F. Grosa, F. Catalano (Torino)

- Jets: B. Trzeciak (Utrecht), N. Zardoshti (CERN), R. Haake (Yale)

* Ac in pp: J. Norman (CNRS), C. Hills (Liverpool)

* Ac in PbPb: C. Zampolli (Bologna, CERN), A. Alici (Bologna)

- D*: G. Luparello (Trieste)

- HF Flow : L. Kreis, A. Dubla (GSlI)

- Electrons/MC-data reweighting: A. Capon, S. Lehner (SMI)

- Baryons: M. Faggin (Padova)

- Hypernuclei : K. Lapidus (CERN), S. Hornung, A. Caliva, A. Mastroserio (Bari), S.
Bufalino, M. Puccio, M. Masera, F. Mazzaschi, P. Fecchio

Group leaders involved:
A. Dainese, Peter Hristov, S. Masciocchi, A. Mischke, A. Morsch, F. Prino, M. Weber,
M. Masera, S. Bufalino

And more joining almost every week...
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Summary and outlook

» The effort is moving forward quickly!

- Lot of work was done so far to develop a working framework that is now being tested and
improved.

- A new machine will be purchased in the coming days (CERN request already submitted)
- large RAM

- 1 NVIDIATESLA V100
* high performance CPU +SSD

- The challenge is now to convert this technical effort into improved physics
performances to make the best with the 2018 PbPb runs and with future Run3 data:

— new measurements using these techniques will be presented soon in the regular
working group and PWG

- Interesting overlap with O2 activities where these techniques could be employed for
fast MC productions, TPC distortion corrections, online HF tagging, online
calibration.... to be discussed with O2 experts!
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Reconstruction issues

e Absorption of anti-matter in detector material

e Secondary nuclei emitted by spallation from the
detector material

e Impact parameter

Primary
nucleus

Secondary
nucleus

Entries / (1 cm)

e Considerable energy loss of the heavy particles in o
the detector, and lack of correction for it i

Energy loss corresponds to slowing down of the 3
particle along the trajectory 1

e /=2 not properly considered in the energy loss

— Slide from Silvia Masciocchi, LEAP2018, Paris, March 15, 2018 ,,



A new common framework for
Machine Learning in ALICE
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A new common framework for ML

Proving flexible tool to perform Machine Learning analysis. It includes:
- Common Ntuplizer for TTree creation that can run on the Grid using LEGO trains

« ROOT to Pandas DataFrame conversion:
« convert the root TTree of MC and Data into Pandas data frames
- create training samples mixing MC and data
» create testing and training samples

- Training/Testing and common validation routines with Scikit/TensorFlow:
 implement most common ML algorithms and Deep Neural network for classification
using SciKit and TensorFlow
- Automatic validation with cross score validation, confusion matrix, learning curves,
ROC, etc et

- Testing on large samples for analysis and new TTree creation:
* new decision flag is added to the data frame
- a new TTree is created including flags and probabilities of all the ML algorithm
- Possibility of exporting the model in C++ for running testing on the Grid
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Advantages

 Ntuplizer for TTree creation that can run on the Grid using trains
- same data format for all the different analyses
- possibility of producing several ML samples at the same time with grid

- Training/Testing and common validation routines:
- same ML core software for all classifications analyses
- automatic tools for validating the results

- Testing on large samples for analysis and new TTree creation:
- all the analyses can still be performed with standard ROOT software
- possibility of performing testing on large scale with Grid
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Common TTree production

Effort led by Andrea F.

TTree production

HF TTree creator
task

HF TTree handler
e Implementing methods to
define the structure and the
filling of the trees
e Mother class + Derived classes
to deal with the variables
specific of each physics object
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Common TTree production

TTrees

® Tree for every physics object,
e.g. DO, filled event-by-event,
containing
- Single track variables
- Object-related variables
- Common structure among
different objects

® Tree for event characterisation
- Centrality
Z vertex
N. of vix. contributors
Trigger selection
Pileup
Run number

%

-

22 AnalysisResults_MC.root
=-<3JPWGHF_TreeCreator:1

[+ % |tree_event_char

=l # |tree_event_char
-3 centrality
-3 Z_vix
3% n_vtx_contributors
-3 n_tracks
-3 is_sel_trigger
-3 is_pileup

. 3 run_number

~

J

(= % |tree_DO \

3% n_cand - 3% chi2perndf_prong1

3% cand_type . 3% nITScls_prong1

~Rxinv_mass 3 ITSclsmap_prong1

~faptcand 7 3 dEAXTPC_0
3% y_cand -~
~fpetacand = 7 & dEAXTPC_1
3% phicand =
3% d_len

3% d_len_xy
3% norm_dI_xy
-3k cos_p

-3k cos_p_xy
-3 imp_par_xy
3% max_norm_d0dOexp
-3k cos_t_star

-3 imp_par_prod

3% p_prong0

-3 pTPC_prong0

3% pt_prong0

-3k eta_prong0

3% imp_par_prong0

-3 phi_prong0

3% nTPCcls_prong0

3% nTPCclspid_prong0
3% nTPCcrossrow_prong0
-3 chi2perndf_prong0

-3 1TSclsmap_prong0

3% p_prong1
-3 pTPC_prong1

3% pt_prong

3% eta_prong1

-3 imp_par_prong1
-3 phi_prong

-3 nTPCcls_prong1
~-3# nTPCclspid_prong1

\_ ¥%nTPCcrossrow_prong1
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LEGO trains — no quota problems, larger storage available compared to private jobs

Status

Files

Processing

Merging

Final Merging

Statistics

State

DONE
ERROR_V

ERROR_E (TTL) 0 |0.0%
ERROR_E (mem) 0 |0.0%
ERROR_E (disk) 0 |0.0%

ERROR_EW
Other

Currently running on LEGO trains

With Markus, Andrea and Jan-Fiete, we managed to run the ntuplisers with

Train Run (PWG train overview)

Running triggered on 08 Oct 2018 18:19 (23d 20:47 ago)
All jobs submitted, masterjobs submitted: 1, last run:
245148

Files copied to the Grid successfully | file copying log | train files in
FC

processing progress
19 total, 19 done, 0 error, 0 active, 0 waiting
© stack trace analysis

merging progress: 1 total, 0 done, 1 error, 0 active, 0 waitinc
intermediate merging: stagel (0/0/0/0/0) stage2 (0/0/0/0/ )
stage3 (0/0/0/0/0) stage4 (0/0/0/0/0)

Totals: running time: 3:36 | output size: 752.2 MB
Files/job (for done jobs): min: 1, max: 5, average: 1.5, standard
deviation: 1

Running time/job (for done jobs): min: 46s, max: 1:13, average:

11m 25s, standard deviation: 16m 28s, 95% done after 1:13

Job Overview

Running time per job

Number of jobs (log scale)

0 10 20

30 40 50 60 70
time/job (min)

Input files per job

Jobs Files i Files/job
Input size _ 12,5
# % # % min max avg 8
19/100.0% 28 100.0% 8.451GB |1 |5 |1.5 B DONE 2 10.0
0 0.0% |0 0.0% 0B 0o 0 0 m ERROR V 5
0 0.0% 0B 0o 0 0 WERRORE(TTL) | & 75
0 0.0% 0B o o0 0 ERROR_E (mem)| 2
0 0.0% 0B 0o 0 0 ERROR_E (disk) §
0 0.0% 0 0.0% 0B o 0o 0 W ERROR_EW -
0 0.0% 0 0.0% 0B o o 0 W Other
0.0

5'0 o hoe

files/job
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What is included?

Several algorithms are already available:

- SVM

- Boosted Decision Trees and AdaBoost

- Random Forests

» Logistic regression

- Keras Deep Neural Networks
- Sequential Network
 Multi-Layer-Perceptron

Ready to perform:

1) Signal/Background classification for:
* Ds, D9, A¢, B+ Hypertritium..
- TPC/TOF PID
- jet tagging with high-level variables
2) Linear and non linear regression
3) A new tool for MC-data reweighing (discussed later)
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Algorithms available

Several algorithms are already available:

- SVM
- Boosted Decision Trees and AdaBoost
- Random Forests
» Logistic regression
« Keras Deep Neural Networks
- Sequential Network
 Multi-Layer-Perceptron
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Can this become a more general tool?

entries

entries

100

101

102

1073

1074

1072 1071
dist_ 12_ML

0 data
MC

2x10°3x18% 10% x 10° 10!

entries

pt_cand_ML

[ data
MC

inv_mass_ML

100 5
g ]
‘g 1071
1072 3

10-35

pt_p_ML

1074 1073

10! 4

1072 107!
d_len_xy ML

[ data
MC

1072 101
d_len_ML

pt_ K_ML pt_pi_ML dca_ML

14 0 data
MC

101 -

entries

10° -

| 1071 4
1072 107!  10° 10? 1074 107 1072 107! 10° 103
norm_dl_xy ML cos_ p_ ML

102
sig_vert_ML

* in this case only the variables flagged as
“used” are training features, the other ones
are corrected as a conseqguence.

* this seems to indicate that we are probably
correcting a global effect (e.g. resolution

differences). More tests ongoing! 49



