Theory Correlations Between W and $Z p_T$ Spectra.

Frank Tackmann

Deutsches Elektronen-Synchrotron

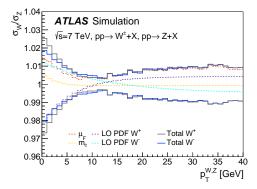
EWWG Workshop CERN, November 14, 2018

Disclaimer: Ongoing work, all results are preliminary ...

Extrapolating from Z to W.

Small $p_T^W < 40 \, { m GeV}$ is the relevant region for m_W

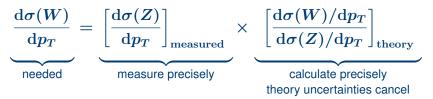
- $\simeq 2\%$ uncertainties in p_T^W translate into $\simeq 10 \, {
 m MeV}$ uncertainty in m_W
- Direct calculation of $W p_T$ spectrum will not reach $\lesssim 1\%$ anytime soon



 \Rightarrow We need to extrapolate from precisely measured $Z p_T$ spectrum to get precise prediction for W

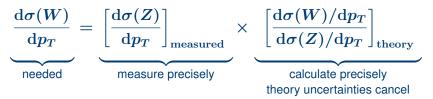
► Regardless how precisely dσ(W)/dp_T can be calculated directly, we always want to exploit Z data to combine all available information to maximize precision

Basic Strategy.



- Ratio is just a proxy
 - More generally: Combine various control measurements, fit to all control and signal processes
 - Tuning Pythia on Z data and use it to predict W is one example of this

Basic Strategy.



- Ratio is just a proxy
 - More generally: Combine various control measurements, fit to all control and signal processes
 - Tuning Pythia on Z data and use it to predict W is one example of this
- Crucial Caveat: Cancellation fundamentally relies on theory correlations
 - Take 10% theory uncertainty on $\sigma^{
 m signal}$ and $\sigma^{
 m control}$
 - \rightarrow 99.5% correlation yields 1% uncertainty on their ratio
 - \rightarrow 98.0% correlation yields 2% uncertainty on their ratio 2× larger!

• In Addition: Must account for all non-cancelling subleading effects

Another talk for another day ...

Theory Correlations.

Theory correlations are also necessary for most interpretations

- Correlations across differential spectrum
- Correlations between different signal processes, different $E_{
 m cm}, ...$

Correlations only come from common sources of uncertainties

Straightforward for parametric uncertainties (PDFs, ...)

Theory Correlations.

Theory correlations are also necessary for most interpretations

- Correlations across differential spectrum
- Correlations between different signal processes, different $E_{\rm cm}, ...$

Correlations only come from common sources of uncertainties

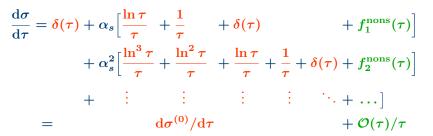
Straightforward for parametric uncertainties (PDFs, ...)

What to do about perturbative theory uncertainties?

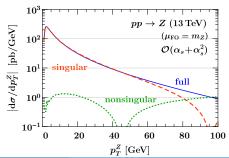
- X Often we don't even really know what our uncertainties mean ...
- X The Issue: Scale variations are inherently ill-suited for this
 - X QCD scales are not physical parameters, they simply specify a particular perturbative scheme
 - X They do not have an uncertainty that can be propagated
 - X They are not the underlying source of uncertainty
 - Trying to decide how to correlate or decorrelate scale variations is really just a bandaid, but not treating the real problem

Small- p_T Region.

Define scaling variable $au \equiv p_T^2/m_V^2$ and expand in powers of au



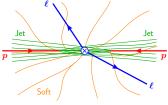
- For small $au \ll 1$ (i.e. $p_T^2/m_V^2 \ll 1$)
 - ✓ Logarithmic terms completely dominate perturbative series
 - ✓ Their all-order structure is actually simpler and more universal
 - ✓ Holds the key for a rigorous, quantitative treatment of theory correlations



Factorization and Resummation at Small p_T .

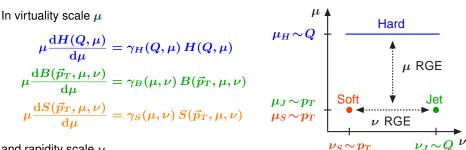
Leading-power p_T spectrum factorizes into hard, collinear, and soft contributions

$$egin{aligned} rac{\mathrm{d}\sigma}{\mathrm{d}ec{p}_T} &= \sigma_0 \, H(Q,\mu) \int \!\mathrm{d}^2ec{k}_a \, \mathrm{d}^2ec{k}_b \, \mathrm{d}^2ec{k}_s \ & \times B_a(ec{k}_a,Qe^Y,\mu,
u) \, B_b(ec{k}_b,Qe^{-Y},\mu,
u) \ & imes \, S(ec{k}_s,\mu,
u) \, \delta(ec{p}_T-ec{k}_a-ec{k}_b-ec{k}_s) \end{aligned}$$



- Each function is a renormalized object with an associated RGE
 - Structure depends on recoil variable but is universal for all color-singlet processes
- ⇒ Perturbative series is determined to all orders by a coupled system of differential equations
 - Their solution leads to resummed predictions
 - Each resummation order (only) requires as ingredients anomalous dimensions and boundary conditions entering the RG solution

Example: Coupled RGE System for p_T .



and rapidity scale ν

$$\begin{split} \nu \frac{\mathrm{d}B(\vec{p}_T, \mu, \nu)}{\mathrm{d}\nu} &= -\frac{1}{2} \int \mathrm{d}^2 \vec{k}_T \, \gamma_\nu(\vec{k}_T, \mu) \, B(\vec{p}_T - \vec{k}_T, \mu, \nu) \\ \nu \frac{\mathrm{d}S(\vec{p}_T, \mu, \nu)}{\mathrm{d}\nu} &= \int \mathrm{d}^2 \vec{k}_T \, \gamma_\nu(\vec{k}_T, \mu) \, S(\vec{p}_T - \vec{k}_T, \mu, \nu) \\ \mu \frac{\mathrm{d}}{\mathrm{d}\mu} \gamma_\nu(\vec{k}_T, \mu) &= \nu \frac{\mathrm{d}}{\mathrm{d}\nu} \gamma_S(\mu, \nu) \delta(\vec{k}_T) = -4\Gamma_{\mathrm{cusp}}[\alpha_s(\mu)] \delta(\vec{k}_T) \end{split}$$

plus evolution equations for α_s and PDFs

Frank Tackmann (DESY)

Example: Multiplicative RGE.

All-order RGE and its solution

$$\mu rac{\mathrm{d}H(Q,\mu)}{\mathrm{d}\mu} = \gamma_H(Q,\mu) H(Q,\mu)$$

 $\Rightarrow \quad H(Q,\mu) = H(Q) imes \exp\left[\int_Q^\mu rac{\mathrm{d}\mu'}{\mu'} \gamma_H(Q,\mu')
ight]$

Necessary ingredients

Boundary condition

$$H(Q) = 1 + \alpha_s(Q) h_1 + \alpha_s^2(Q) h_2 + \cdots$$

Anomalous dimension

,

$$egin{aligned} \gamma_H(Q,\mu) &= lpha_s(\mu)ig[\Gamma_0+lpha_s(\mu)\,\Gamma_1+\cdotsig]\lnrac{Q}{\mu} \ &+ lpha_s(\mu)ig[\gamma_0+lpha_s(\mu)\,\gamma_1+\cdotsig] \end{aligned}$$

 \Rightarrow Each resummation order determined by a few (universal) parameters

Perturbative series at small recoil is determined to all orders by a coupled system of differential equations (RGEs)

- → Each resummation order only depends on a few semi-universal parameters
- → Unknown parameters at higher orders are the actual sources of perturbative theory uncertainty

	boundary conditions			anomalous dimensions			
order							
LL NLL' NNLL'	h_0	s_0	b_0	_	_	Γ_0	$m{eta}_{0}$
NLL'	h_1	s_1	$\boldsymbol{b_1}$	γ_0^h	γ_0^s	Γ_1	$oldsymbol{eta_1}$
NNLL'	h_2	s_2	$\boldsymbol{b_2}$	γ_1^h	γ_1^s	Γ_2	$m{eta_2}$
N ³ LL' N ⁴ LL'	h_3	s 3	b_3	γ^h_2	γ_2^s	Γ_3	$oldsymbol{eta_3}$
N ⁴ LL′	h_4	s_4	b_3	γ^h_3	γ_3^s	Γ_4	$oldsymbol{eta}_4$

II.

- Basic Idea: Treat them as theory nuisance parameters (TNPs)
 - $\checkmark\,$ Vary them independently to estimate the theory uncertainties
 - ✓ The extent to which they are common and universal correctly encodes the theory correlations between different processes and kinematic regions
- Price to Pay: Calculation becomes quite a bit more complex

Level 1: most conservative

- Use the highest known order as the TNP
- Vary within some factor of its known value

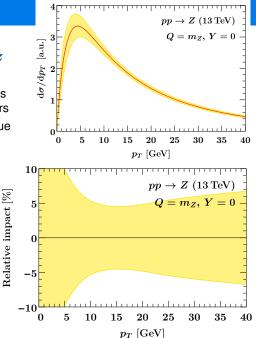
Level 2: maximal precision

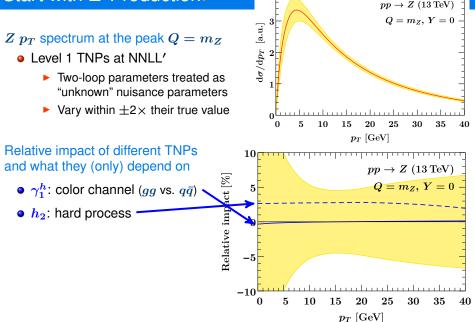
- Work at the next still unknown order
- Vary the TNPs within a reasonable expected range
 - This requires some theory prejudice, but this provides much more control than scale variations
 - Since there are several independent TNPs, more robust against unintentional/accidental underestimate of any one TNP
- TNPs can in principle be constrained by data

 $Z \ p_T$ spectrum at the peak $Q = m_Z$

Level 1 TNPs at NNLL'

- Two-loop parameters treated as "unknown" nuisance parameters
- Vary within ±2× their true value



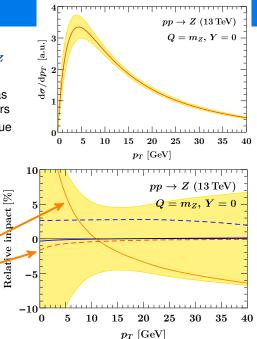


$Z \ p_T$ spectrum at the peak $Q = m_Z$

- Level 1 TNPs at NNLL'
 - Two-loop parameters treated as "unknown" nuisance parameters
 - Vary within $\pm 2 \times$ their true value

Relative impact of different TNPs and what they (only) depend on

- γ_1^h : color channel (gg vs. $q\bar{q}$)
- h₂: hard process
- γ_1^{ν} : type of recoil variable
- s₂: type of recoil variable



$Z \ p_T$ spectrum at the peak $Q = m_Z$

- Level 1 TNPs at NNLL'
 - Two-loop parameters treated as "unknown" nuisance parameters
 - Vary within $\pm 2 \times$ their true value

Relative impact of different TNPs 10 and what they (only) depend on $pp \rightarrow Z (13 \,\mathrm{TeV})$ ative impact [%] $Q=m_Z, Y=0$ • γ_1^h : color channel (gg vs. $q\bar{q}$) 5 h₂: hard process • γ_1^{ν} : type of recoil variable s₂: type of recoil variable • b₂: type of recoil variable -10channel: $q \rightarrow b, q \rightarrow q, g \rightarrow q$ 30 35 40 n 5 101525 $p_T \; [\text{GeV}]$

[a.u.]

 ${\rm d}\sigma/{\rm d}p_T$

0

10 15 20

 $pp
ightarrow Z \; (13 \, {
m TeV})$ $Q = m_Z, \; Y = 0$

25

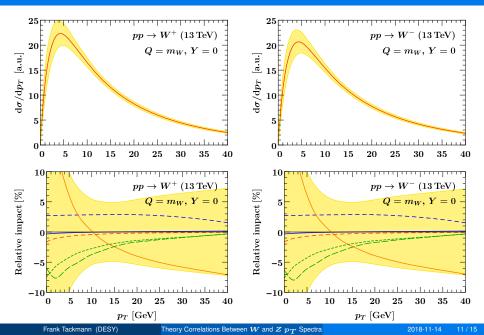
 $p_T \, [\text{GeV}]$

30

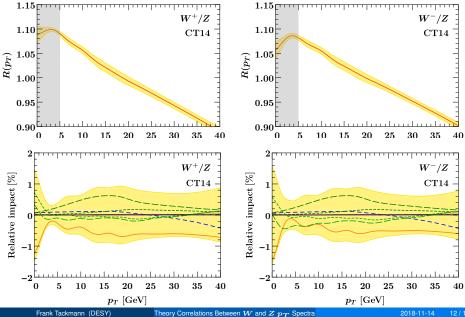
35

40

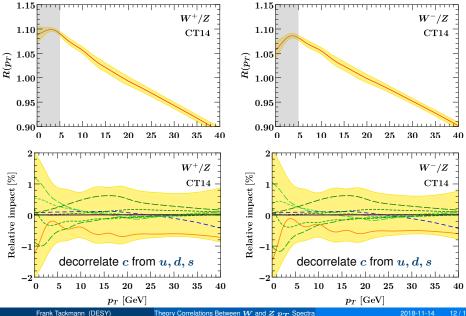
W^+ and W^- .



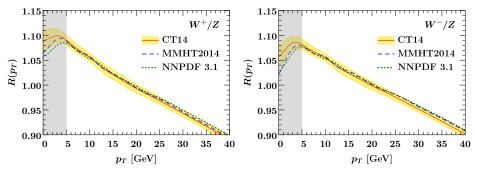
 W^\pm/Z .



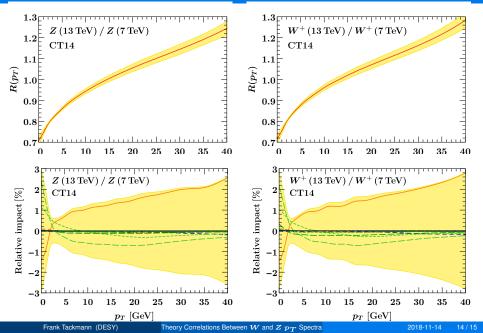
 W^{\pm}/Z .



PDF Dependence.



Different $E_{ m cm}$.



Summary.

Benefits of Theory Nuisance Parameters

- Encode true correlations between different
 - ▶ p_T values, Q values, E_{cm} , partonic channels, hard processes
 - Different recoil variables $(\vec{p}_T, \phi^*, p_T^{\text{jet}}, \mathcal{T}_0, ...)$
 - ⇒ Predictions differing in any of these can be properly correlated
- Can be propagated straightforwardly (like any other nuisance parameters)
 - Including Monte Carlo, neutral networks, ...
- Can use partial orders and maximally exploit all available information
 - Uncertainties explicitly account for new structures (partonic channels) appearing at higher order
 - Reduced uncertainties because more perturbative information is used
- Can in principle be constrained by data
 - Consistent to use precise control measurements to constrain the total uncertainties on final predictions
 - This also requires some care to not overconstrain them