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Extrapolating from Z to W

Small p}¥ < 40 GeV is the
relevant region for myy

@ ~ 2% uncertainties in p}¥
translate into ~ 10 MeV
uncertainty in my,

@ Direct calculation of W pr
spectrum will not reach < 1%
anytime soon
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= We need to extrapolate from precisely measured Z pr spectrum to get

precise prediction for W

» Regardless how precisely do (W) /dpr can be calculated directly, we
always want to exploit Z data to combine all available information to

maximize precision
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Basic Strategy

do(W) [da(Z)} [da(W)/de}
de de measured dO'(Z)/de theory
ne;aed measure??)recisely calculat;rprecisely

theory uncertainties cancel
@ Ratio is just a proxy

» More generally: Combine various control measurements, fit to all control and
signal processes
» Tuning Pythia on Z data and use it to predict W' is one example of this
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Basic Strategy

do(W) {da(Z)} [da(W)/de}
de de measured dO'(Z)/de theory
ne;aed measure??)recisely calculat;rprecisely

theory uncertainties cancel
@ Ratio is just a proxy

» More generally: Combine various control measurements, fit to all control and
signal processes

» Tuning Pythia on Z data and use it to predict W' is one example of this
@ Crucial Caveat: Cancellation fundamentally relies on theory correlations

> Take 10% theory uncertainty on o*&"a! and geontre!
— 99.5% correlation yields 1% uncertainty on their ratio
— 98.0% correlation yields 2% uncertainty on their ratio — 2 x larger!

@ In Addition: Must account for all non-cancelling subleading effects
> Another talk for another day ...
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Theory Correlations

Theory correlations are also necessary for most interpretations
@ Correlations across differential spectrum
@ Correlations between different signal processes, different E¢py, ...

Correlations only come from common sources of uncertainties
@ Straightforward for parametric uncertainties (PDFs, ...)
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Theory Correlations

Theory correlations are also necessary for most interpretations
@ Correlations across differential spectrum
@ Correlations between different signal processes, different E¢py, ...

Correlations only come from common sources of uncertainties
@ Straightforward for parametric uncertainties (PDFs, ...)

What to do about perturbative theory uncertainties?
X Often we don’t even really know what our uncertainties mean ...

X The Issue: Scale variations are inherently ill-suited for this

X QCD scales are not physical parameters, they simply specify a particular
perturbative scheme

X They do not have an uncertainty that can be propagated
X They are not the underlying source of uncertainty

X Trying to decide how to correlate or decorrelate scale variations is really just
a bandaid, but not treating the real problem
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Small-p7 Region

Define scaling variable 7 = p3./m3%, and expand in powers of =
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Factorization and Resummation at Small pr

Leading-power pr spectrum factorizes
into hard, collinear, and soft contributions

d - o o

L9 5o H(Q, ) /dea a2k, a2F,

dpr
X Ba(Eaa Qey7 [22) V) Bb(Eba Qe_Ya 122) V)
X S(Es7u“/y) 6(ﬁT - Ea. - Eb - Es)

@ Each function is a renormalized object with an associated RGE
» Structure depends on recoil variable but is universal for all color-singlet
processes
= Perturbative series is determined to all orders by a coupled system of
differential equations
» Their solution leads to resummed predictions

» Each resummation order (only) requires as ingredients anomalous
dimensions and boundary conditions entering the RG solution
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Example: Coupled RGE System for pr

In virtuality scale u

dH(Q,

# =vu(Q, 1) H(Q, p)
%ﬁ“’y) = vB(n,v) B(Pr, p,v)
“%&MM :75(“7 V) S(ﬁTauay)

and rapidity scale v
VdB(ﬁTa My V) _
dv

VdS(ﬁTv [22) V)
dv

d - d
u@%(kr,u) =vg,rs(m, v)d(kr) =

plus evolution equations for as and PDFs

Frank Tackmann (DESY)

A
Hard
pE~Q T
A
! u RGE
ny~pr Soft v Jet
- T @ s >0
Hs ~ Ppr l v RGE l
vs~pr vi~Q v

Theory Correlations Between W and Z p~ Spectra

= /dQET Yo (kr, p) S(Br — kr, p,v)

1 [ on = L
— —§/d2kT')’u(kTyl-l') B(pr — kr, p,v)

Teuspovs (1)]8 (k)

2018-11-14



Example: Multiplicative RGE

All-order RGE and its solution

dH(Q, 1)
P

~  H(Qup) = HQ) xexp[/;

=vu(Q,p) H(Q, 1)

’

d
’f 7H(Q’ﬂl)]
17

Necessary ingredients
@ Boundary condition
HQ) =1+ as(Q)hi +a2(Q) ha +---
@ Anomalous dimension
Q
Yu(Q, p) = as(p) [FO +as(u) Ty + -+ ] In Z
+ as(p’) [’70 + as(p') 71 + - }

= Each resummation order determined by a few (universal) parameters
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Theory Correlations at Small pr

Perturbative series at small recoil is determined to all orders by a coupled
system of differential equations (RGEs)

boundary conditions | anomalous dimensions

— Each resummation order only order || A, ‘ Sn bn | A" A2 Tn Bn
depends on a few L
semi-universal parameters ho | so  bo — = To Bo

. NLL” || hy |81 b1 |7 A T1 B

— Unknown parameters at higher NNLU L B o b h s Ty B
orders are the actual sources of o 2 2 02 72 7t 2 P2
perturbative theory uncertainty ~ NLL'|| 7a | s b3 |92 92 Ts s
NALL || hs | sa bs YR N8 T4 Ba

@ Basic Idea: Treat them as theory nuisance parameters (TNPs)
v Vary them independently to estimate the theory uncertainties
v The extent to which they are common and universal correctly encodes the
theory correlations between different processes and kinematic regions

@ Price to Pay: Calculation becomes quite a bit more complex
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Two Levels

Level 1: most conservative
@ Use the highest known order as the TNP

@ Vary within some factor of its known value

Level 2: maximal precision
@ Work at the next still unknown order

@ Vary the TNPs within a reasonable expected range

» This requires some theory prejudice, but this provides much more control
than scale variations

» Since there are several independent TNPs, more robust against
unintentional/accidental underestimate of any one TNP

@ TNPs can in principle be constrained by data
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Start with Z Production T ‘pp‘_)z‘(lsT‘eV) I

Q=mz,Y =0
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Z pr spectrum at the peak Q = myz 2
@ Level 1 TNPs at NNLL’ 52
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Start with Z Production T I

Q=mz,Y =0

(%]
L B

Z pr spectrum at the peak Q = myz 2
@ Level 1 TNPs at NNLL’ 52

b

el

» Two-loop parameters treated as
“unknown” nuisance parameters

» Vary within 2 their true value Otm‘m"mu‘\wmmwmmw
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Start with Z Production T I

Q=mz,Y =0
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Z pr spectrum at the peak Q = myz 2
@ Level 1 TNPs at NNLL’ 52
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Start with Z Production T I

Q=mz,Y =0

(%]
L B

Z pr spectrum at the peak Q = myz 2
@ Level 1 TNPs at NNLL’ 52

b

el

» Two-loop parameters treated as
“unknown” nuisance parameters

> Vary within £2 x their true value
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@ ~/: type of recoil variable
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Relative impact [%)]

pp — WT (13 TeV)
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PDF Dependence
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Different E;p,

Relative impact [%)]
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Benefits of Theory Nuisance Parameters

@ Encode true correlations between different
» pr values, Q values, E.n, partonic channels, hard processes
» Different recoil variables (pr, ¢, p’:ﬁt, To, .-.)
=- Predictions differing in any of these can be properly correlated

@ Can be propagated straightforwardly (like any other nuisance parameters)
» Including Monte Carlo, neutral networks, ...

@ Can use partial orders and maximally exploit all available information

» Uncertainties explicitly account for new structures (partonic channels)
appearing at higher order
» Reduced uncertainties because more perturbative information is used

@ Can in principle be constrained by data

» Consistent to use precise control measurements to constrain the total
uncertainties on final predictions

» This also requires some care to not overconstrain them
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