
Overview of Drell-Yan Measurements in CMS and of Their Relevance to PDFs

Dimitri Bourilkov University of Florida on behalf of the CMS Collaboration

LHC EW Precision Sub-group Meeting, CERN, November 13, 2018

UF FLORIDA

Overview

- Precision measurements at LHC and PDFs
- Setting the stage a touch of theory
- Overview of Drell-Yan (DY) measurements in CMS:
 - Recent results from 8 TeV
 - Results from 13 TeV
- Relevance for improved PDF determinations
 Outlook

Introduction I

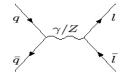
Examples of precision measurements at LHC: > Effective electroweak (EW) mixing angle $\sin^2\theta_{lept}^{eff}$ from the forward-backward asymmetry A_{FB} of lepton pairs e⁺e⁻ or $\mu^+\mu^-$ in Drell-Yan events close to the Z pole \Rightarrow provides an indirect measurement of the mass M_W by using EW radiative corrections to connect to the on-shell relation

- $\sin^2\theta_w = 1 M_w^2 / M_z^2$
- A ±0.00030 measurement of $\sin^2\theta_{lept}^{eff}$ corresponds to a ±15 MeV indirect measurement of M_W; given that LHC is a Z factory, PDF uncertainties are the limiting factor
- **Direct M_w measurements**
 - **Top mass**

Introduction II

- PDFs play a crucial role both in discoveries (Higgs), searches for new phenomena, and precision physics
- Precision measurements @ LHC will require PDFs approaching percent level uncertainties
- This will require combining DIS, fixed target DY, Tevatron @ LHC inputs
 - Larger datasets coupled with precise theory predictions
 - EW gauge bosons, Drell-Yan
 - Inclusive jets
 - Top pairs

Statistical uncertainties often well below 1% ⇒ control of correlated systematics?


Setting the Stage

D.Bourilkov, Florida, CMS

5

Fermion-pair Production D. Bourilkov

parton cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |\gamma_{\mathrm{s}} + \mathrm{Z}_{\mathrm{s}} + \mathrm{New \ Physics\ ?!}|^2$$
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{4\mathrm{s}} [\mathrm{A}_0(1 + \cos^2\theta) + \mathrm{A}_1\cos\theta]$$

 $A_{0} = Q_{q}^{2}Q_{l}^{2} + 2Q_{q}Q_{l}v_{q}v_{l}\Re\chi(s) + (v_{q}^{2} + a_{q}^{2})(v_{l}^{2} + a_{l}^{2})|\chi(s)|^{2}$

$$\begin{split} A_1 &= 4 Q_q Q_l a_q a_l \Re \chi(s) + 8 v_q a_q v_l a_l |\chi(s)|^2 \\ \sigma &= \frac{4 \pi \alpha^2}{3 s} A_0 \qquad A_{FB} = \frac{3 A_1}{8 A_0} \\ \chi(s) &= \frac{s}{(s - M_Z^2) + \imath s \frac{\Gamma_Z}{M_Z}} \quad v_f = \frac{1}{2 s_W c_W} (T_f^3 - 2 s_W^2 Q_f) \quad a_f = \frac{1}{2 s_W c_W} T_f^3 \end{split}$$

arXiv:hep-ph/0003275

D.Bourilkov, Florida, CMS

Fermion-pair Production

D. Bourilkov

parton distribution functions (p.d.f.): pp $\longrightarrow l_1 l_2$

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}M_{ll}\mathrm{d}y}[pp \to l_1 l_2] = \sum_{ij} \frac{1}{1 + \delta_{ij}} \left(f_{i/p}(x_1) f_{j/p}(x_2) + (i \leftrightarrow j) \right) \hat{\sigma}$$

 $\hat{\sigma}$ - the cross section for the partonic subprocess $ij \to l_1 l_2$ $x_1 = \sqrt{\tau} e^y, \, x_2 = \sqrt{\tau} e^{-y}, \, M_{ll} = \sqrt{\tau s} = \sqrt{\hat{s}}$ - mass y - rapidity of the lepton pair

 $\sigma_{F\pm B}(y, M) = [\int_0^1 \pm \int_{-1}^0]\sigma_{ll} d(\cos \theta^*)$ $A_{FB}(y, M) = \frac{\sigma_{F-B}(y, M)}{\sigma_{F+B}(y, M)}$

the probability to find a parton *i* with momentum fraction x_i in the (anti)proton is $f_{i/p(\bar{p})}(x_i)$ for a $(x_1 \ge x_2)$ pair we have 4 combinations $u\bar{u}, d\bar{d}, \bar{u}u, \bar{d}d$

у	0	2	4				
M = 91.2 GeV							
\mathbf{x}_1		0.0481					
\mathbf{x}_2	0.0065	0.0009	0.0001				
M = 200 GeV							
$\mathbf{x_1}$		0.1056					
\mathbf{x}_2	0.0143	0.0019	0.0003				
M = 1000 GeV							
$\mathbf{x_1}$	0.0714	0.5278	-				
\mathbf{x}_2	0.0714	0.0097	-				

LHC SM Workshop

Forward-backward Asymmetry D. Bourdkow

$$\begin{split} A_{FB}^0(M_Z^2) &= \frac{3}{4} A_q \cdot A_l \\ A_q &= \frac{2(1-4|Q_q|sin^2\theta_{eff})}{1+(1-4|Q_q|sin^2\theta_{eff})^2} \\ A_l &= \frac{2(1-4sin^2\theta_{eff})}{1+(1-4sin^2\theta_{eff})^2} \end{split}$$

for $\sin^2 \theta_{\rm eff}^{\rm kpt}(M_Z^2) = 0.232$

$$\begin{split} A_{FB} &= 0.0716 \qquad (up-q) \\ A_{FB} &= 0.1005 \qquad (down-q) \\ \frac{\delta}{\delta} \frac{A_{FB}}{\mathrm{sin}^2 \theta_{\mathrm{eff}}^{\mathrm{lept}}(\mathrm{M}_{\mathrm{Z}}^2)} &= -4.2 \qquad (up-q) \\ \frac{\delta}{\delta} \frac{A_{FB}}{\mathrm{sin}^2 \theta_{\mathrm{eff}}^{\mathrm{lept}}(\mathrm{M}_{\mathrm{Z}}^2)} &= -5.6 \quad (down-q) \end{split}$$

arXiv:hep-ph/0003275

Table 9: Statistical precision which can be obtained on $\sin^2 \theta_{\text{eff}}^{\text{lept}}(M_Z^2)$ from measurements of A_{FB} in $Z \to ee$ from one LHC experiment with 100 fb⁻¹. Results are given for different jet rejection factors ρ for the forward calorimetry 2.5 < $|\eta|$ < 4.9.

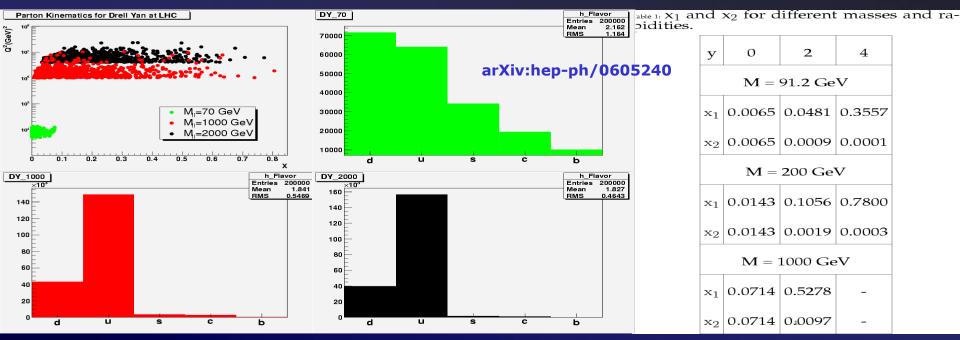
of Theory

DY

Cuts	ρ	A_{FB} (%)	ΔA_{FB} (%)	$\Delta \sin^2 \theta_{ m eff}^{ m lept}(M_Z^2)$
$ \eta < 2.5$ both e^\pm	-	0.774	0.020	6.6×10^{-4}
$ \eta < 2.5$ both e^\pm				
$ y(e^+e^-) > 1.0$	-	1.66	0.030	4.0×10^{-4}
$ \eta < 2.5$ one e^\pm	10^{4}	2.02	0.017	1.4×10^{-4}
$ \eta < 4.9$ the other e^\pm	10^{2}	1.98	0.018	1.4×10^{-4}
	10^{1}	1.68	0.021	$1.7{ imes}10^{-4}$
$ \eta < 2.5$ one e^{\pm}	10^{4}	3.04	0.022	1.35×10^{-4}
$ \eta < 4.9$ the other e^\pm	10^{2}	2.94	0.023	1.41×10^{-4}
$ y(e^+e^-) > 1.0$	10^{1}	2.31	0.030	1.83×10^{-4}

Standard model physics (and more) at the LHC

The most important systematic contribution is that coming from the uncertainties in the pdf's. A study using several "modern" pdf's (MRST, CTEQ3 and CTEQ4) gave agreement between the resulting values of A_{FB} within the 1% statistical errors of the study (5 \times 10⁵ events were generated for each pdf set). This uncertainty must be reduced by a factor of 10 if it is to be smaller than the expected statistical precision on A_{FB} shown in Table 9. It remains to be seen whether (a) the differences arising from the various pdf's will shrink with increased statistical sensitivity of the study and (b) whether the current pdf's actually describe the measured data sufficiently well (since the pfd's are fitted to common data, variations are not necessarily indicative of the actual uncertainties). New measurements from the Tevatron (and ultimately the LHC itself) will improve the understanding of the pdf's, but it is unclear at this stage whether this will be sufficient. It may be possible to fit simultaneously $\sin^2 \theta_{\text{off}}^{\text{lept}}(M_Z^2)$ and the pdf's, or alternatively, it may be necessary to reverse the strategy and use the measurement of A_{FB} combined with existing measurements of $\sin^2 \theta_{\text{off}}^{\text{lept}}(M_Z^2)$ to constrain the pdf's.


arXiv:hep-ph/0003275

D.Bourilkov, Florida, CMS

8

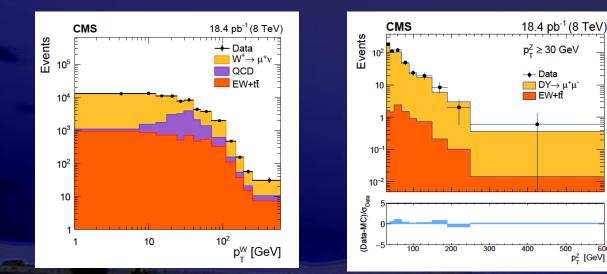
Drell-Yan Parton Kinematics & Flavor Composition

Different X ranges probed for different masses; quite low X @ Z => HERA input can be important (HERALHC workshop)

Measuring PDFs is precision physics; at the start we will be constrained by PDFs; actually they are known quite well for DY@LHC

D.Bourilkov

ElectroWeak Physics @ LHC Mumbai 2009



CMS Measurements at 8 TeV

W/Z p_T Spectra @ 8 TeV

- Measured @ 8 TeV using special low lumi data 18.4 pb⁻¹
- $Z \rightarrow \mu\mu$, $W \rightarrow ev$ or $W \rightarrow \mu v$
- **Data compared to QCD@NNLO**
- JHEP (2017) 2017:96

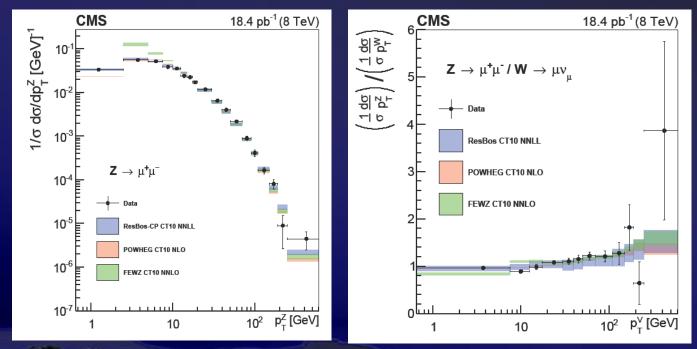
600


DY

W/Z p_T Spectra @ 8 TeV

1

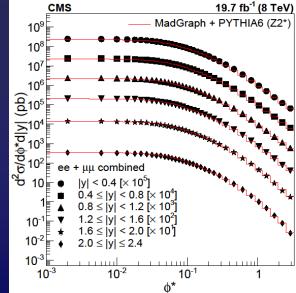
Good agreement between data and QCD@NNLO JHEP (2017) 2017:96

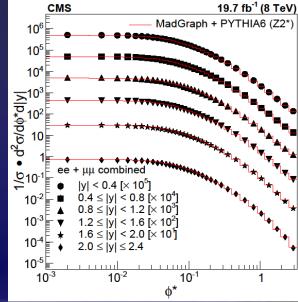

DY

W/Z p_T Spectra @ 8 TeV

Good agreement between data and QCD@NNLO JHEP (2017) 2017:96

DY


Differential Z Cross Section in ϕ^* and y

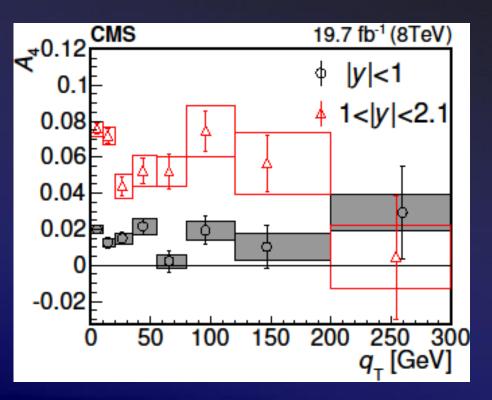


19.7 fb⁻¹ of 8 TeV data

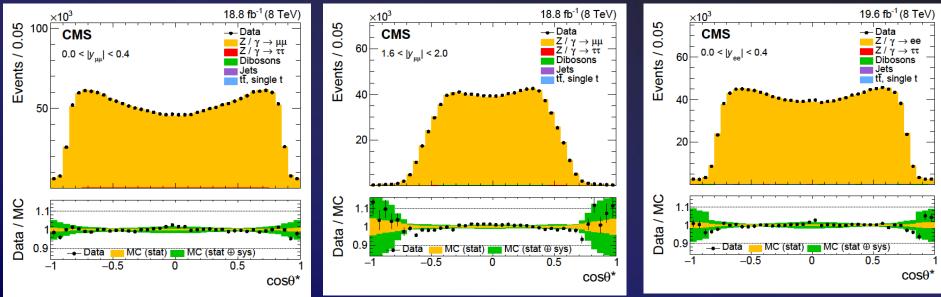
alternative to the p_{T} measurement, more precise

JHEP (2018) 2018:172

normalized


 $\phi^* = \tanh((\eta^- - \eta^+)/2 \sim q_T/m_{||})$

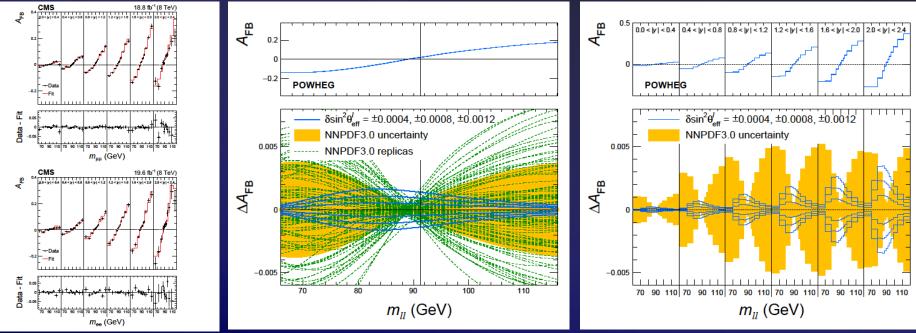
A_{FB} & Angular Coefficients @ 8 TeV


- 19.7 fb⁻¹ of 8 TeV data
- Angular coefficients A₀ to A₄ measured as function of the Z boson y and p_T
- □ A₄ related to A_{FB}
- Phys. Lett. B 750 (2015) 154

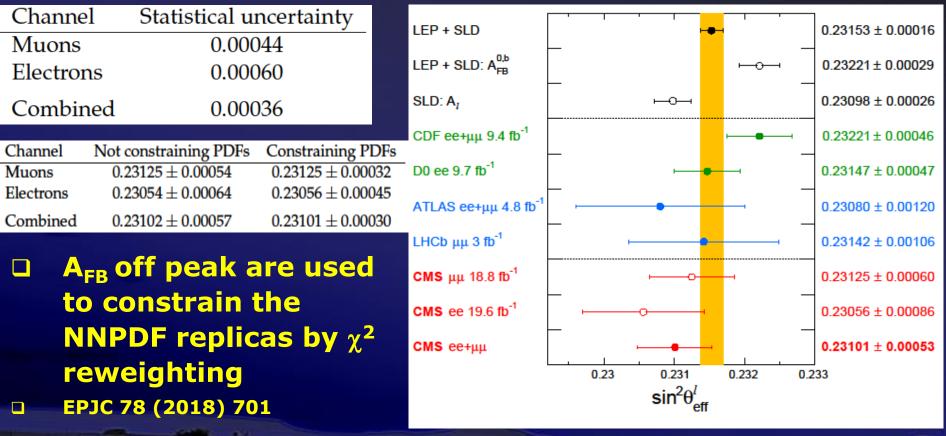
DY

A_{FB} & Weak Mixing Angle @ 8 TeV

19.6 fb⁻¹ of 8 TeV data

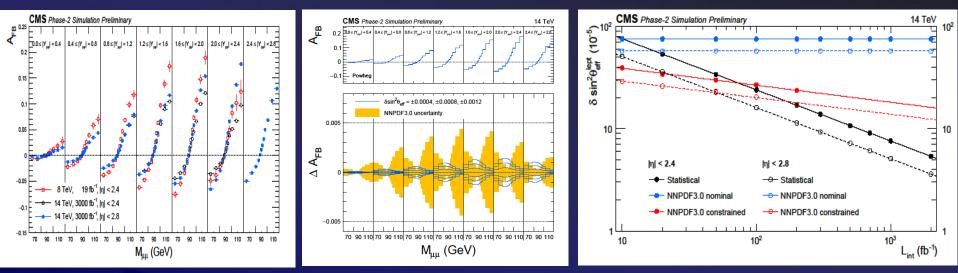

- □ Acceptance for e^+e^- or $\mu^+\mu^-$ in different y bins
- EPJC 78 (2018) 701

A_{FB} & Weak Mixing Angle @ 8 TeV


17

G rapidity bins 0-2.4 and 12 mass bins 60-120 GeV
 A_{FB} has different dependence on mass and sin²θ_{lept} eff
 EPJC 78 (2018) 701
 D.Bourilkov, Florida, CMS

A_{FB} & Weak Mixing Angle @ 8 TeV



DY

A_{FB} & Weak Mixing Angle @ HL-LHC

 Projections for HL-LHC: constraining PDFs looks promising and will improve with more data
 CMS-PAS-FTR-17-001

CMS Measurements at 13 TeV

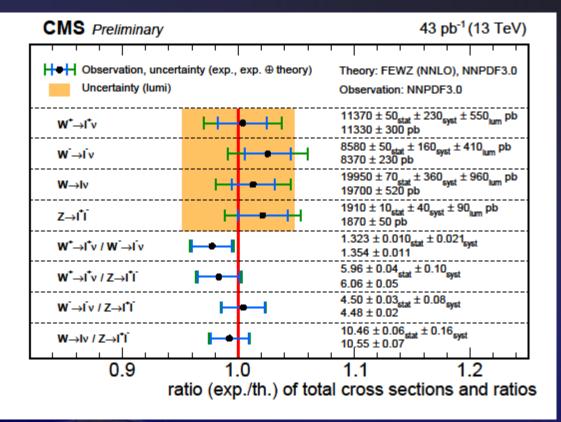
D.Bourilkov, Florida, CMS

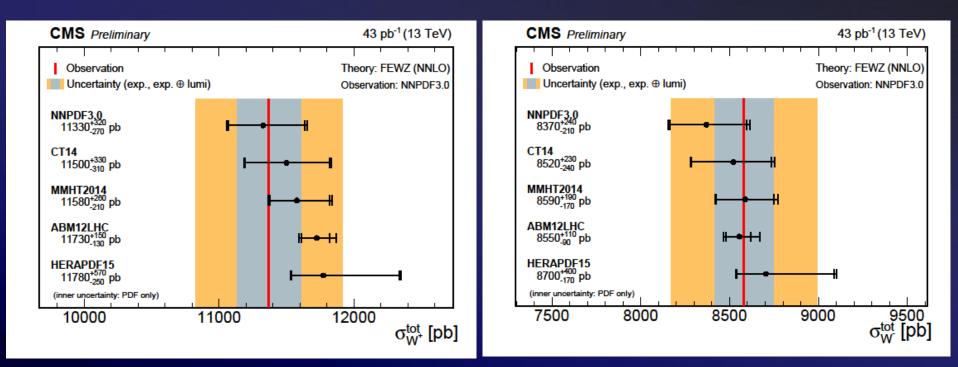
20

DY

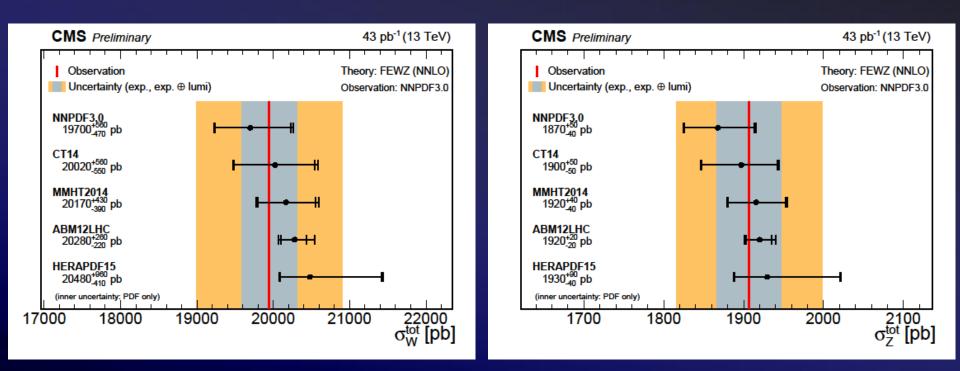
43 pb⁻¹ @ 13 TeV Inclusive cross sections and ratios in good agreement with QCD@NNLO

CMS-PAS-SMP-15-004


Channel		$\sigma \times \mathcal{B}$ [pb] (total)	NNLO [pb]
***	$e^+\nu$	$11390 \pm 90 \text{ (stat)} \pm 340 \text{ (syst)} \pm 550 \text{ (lumi)}$	1 1 220
W+	$\mu^+\nu$	$11350 \pm 60 (\text{stat}) \pm 320 (\text{syst}) \pm 550 (\text{lumi})$	11330^{+320}_{-270}
	$\ell^+ \nu$	$11370 \pm 50 (\text{stat}) \pm 230 (\text{syst}) \pm 550 (\text{lumi})$	
	$e^{-\nu}$	$8680 \pm 80 ({ m stat}) \pm 250 ({ m syst}) \pm 420 ({ m lumi})$. 210
W^-	$\mu^-\nu$	$8510 \pm 60 ({ m stat}) \pm 210 ({ m syst}) \pm 410 ({ m lumi})$	8370^{+240}_{-210}
	$\ell^-\nu$	$8580 \pm 50 (\text{stat}) \pm 160 (\text{syst}) \pm 410 (\text{lumi})$	
	eν	$20070 \pm 120 (\text{stat}) \pm 570 (\text{syst}) \pm 960 (\text{lumi})$	
W	μν	$19870 \pm 80 ({ m stat}) \pm 460 ({ m syst}) \pm 950 ({ m lumi})$	19700^{+560}_{-470}
	$\ell \nu$	$19950 \pm 70 ({ m stat}) \pm 360 ({ m syst}) \pm 960 ({ m lumi})$	
	e ⁺ e ⁻	$1920 \pm 20 ({\rm stat}) \pm 60 ({\rm syst}) \pm 90 ({\rm lumi})$	
Z	$\mu^+\mu^-$	$1900 \pm 10 ({ m stat}) \pm 50 ({ m syst}) \pm 90 ({ m lumi})$	1870^{+50}_{-40}
	$\ell^+\ell^-$	$1910 \pm 10 ({\rm stat}) \pm 40 ({\rm syst}) \pm 90 ({\rm lumi})$	10
Quantity		Ratio (total)	NNLO
	e	1.313 ± 0.016 (stat) ± 0.028 (syst)	
R_{W^+/W^-}	μ	1.334 ± 0.011 (stat) ±0.031 (syst)	$1.354^{+0.011}_{-0.012}$
	l	1.323 ± 0.010 (stat) ± 0.021 (syst)	
	e	$5.94 \pm 0.07 ({ m stat}) \pm 0.16 ({ m syst})$	
$R_{W^+/Z}$	μ	$5.98 \pm 0.05 ({ m stat}) \pm 0.14 ({ m syst})$	$6.06^{+0.04}_{-0.05}$
	l	5.96 ± 0.04 (stat) ± 0.10 (syst)	0.000
	e	$4.52 \pm 0.06 (\text{stat}) \pm 0.12 (\text{syst})$	
$R_{W^-/Z}$	μ	4.49 ± 0.04 (stat) ± 0.10 (syst)	$4.48^{+0.03}_{-0.02}$
	ℓ	4.50 ± 0.03 (stat) ± 0.08 (syst)	0.02
	e	$10.46 \pm 0.11 (\text{stat}) \pm 0.26 (\text{syst})$	
$R_{W/Z}$	μ	$10.47 \pm 0.08 ({ m stat}) \pm 0.20 ({ m syst})$	$10.55_{-0.06}^{+0.07}$
, 2	l	$10.46 \pm 0.06 (\text{stat}) \pm 0.16 (\text{syst})$	-0.00


Inclusive cross sections & Ratios sensitive to PDFs

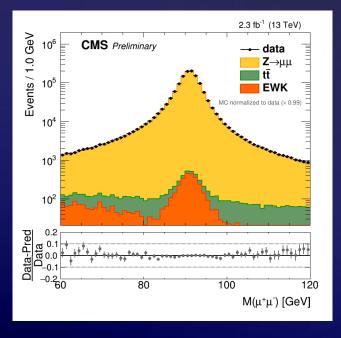
CMS-PAS-SMP-15-004

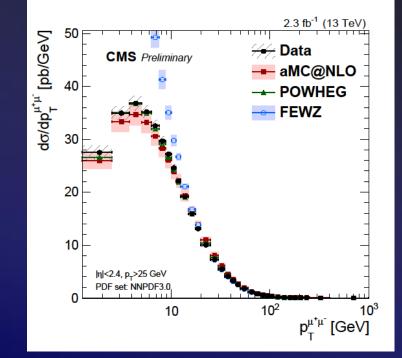

CMS-PAS-SMP-15-004

D.Bourilkov, Florida, CMS

23

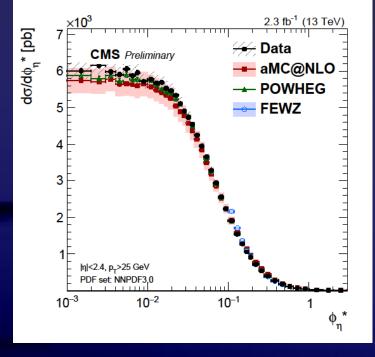
CMS-PAS-SMP-15-004


D.Bourilkov, Florida, CMS

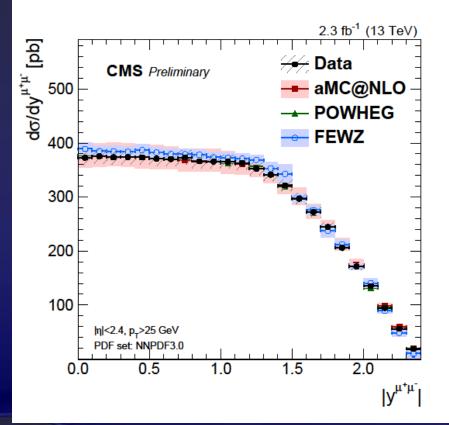

DY

24

Z Production @ 13 TeV

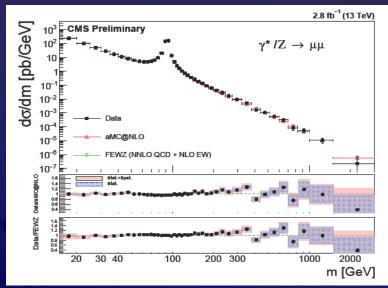

DY

□ 2.3 fb⁻¹ @ 13 TeV: y, p_T and φ* distributions □ CMS-PAS-SMP-15-011

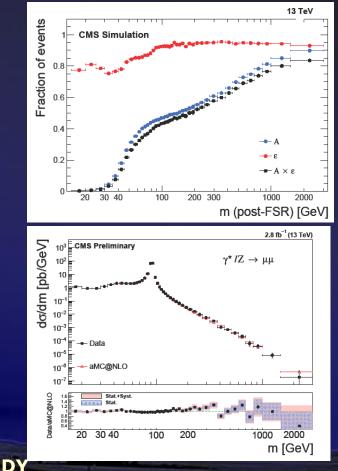


Z Production @ 13 TeV

DY



CMS-PAS-SMP-15-011



DY @ 13 TeV

 Spectra @ 7, 8 & 13 TeV
 M from 15-3000 GeV with 2015 data: 2.8 fb⁻¹
 CMS-PAS-SMP-16-009

Relevance for Improved PDF Determinations

PDFs from DY @ Fixed Target Experiments

File Edit View Go Help

- Previous 👆 Next 1 (1 of 12) Best Fit COOLMENKS **исследовзнии** дубна E2-85-312 B.Betev*, D.Bourilkov*, S.Cht.Mavrodiev

> STRUCTURE FUNCTIONS PION AND NUCLEON DETERMINED FROM HIGH MASS MUON PAIR PRODUCTION

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

1985

(γ * exchange)

together with DIS

The double differential DY

spectra in (M,y) or (M,x_f)

have long been a staple of

PDF extractions from data

One example: PDFs from

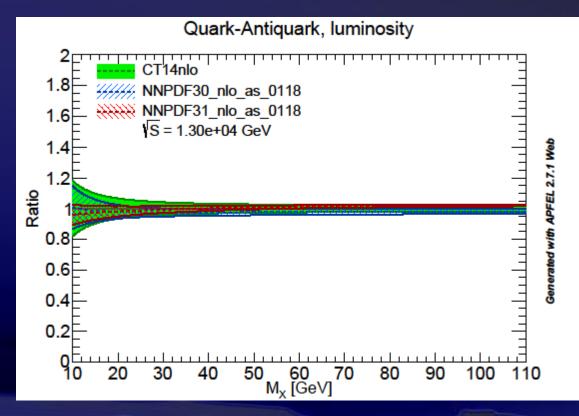
and π -Tungsten Drell-Yan

fixed target p-Platinum

experiments below and

above the Y resonances

Modern PDFs



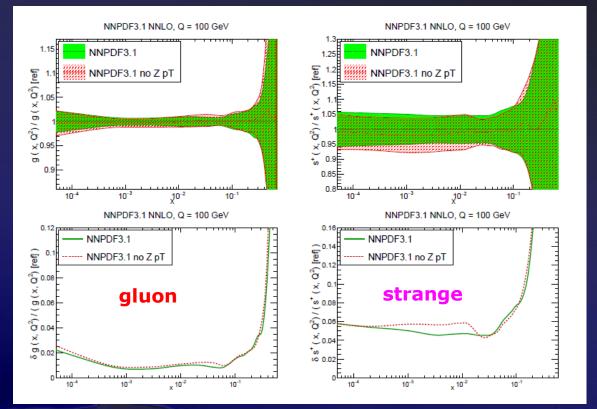
PDFs play a central role: determined from collider (ep, ppbar & pp) and fixed target DIS & DY data (can be at low momentum transfers: non-perturbative & higher twist effects, and/or nuclear effects)

- DF4LHC recommendations (arXiv:1510.03865) based on modern NLO and NNLO PDF sets:
 - **CT14, MMHT2014, NNPDF30**
 - Individual PDFs for SM measurements
 - PDF4LHC15_mc for BSM searches
- Individual PDF uncertainties are getting smaller, even at the mass edges

Parton Luminosity @ Z & Low Mass

PDF uncertainties much smaller, below 10-20% even at masses ~10 GeV NNPDF31 shows the smallest uncertainties and predicts higher cross sections for most of the mass range 10 to 110 GeV

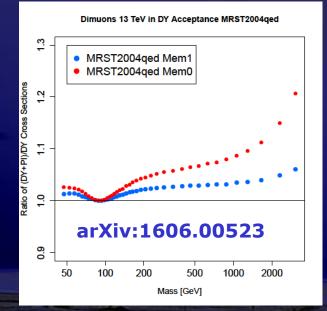
NNPDF3.1

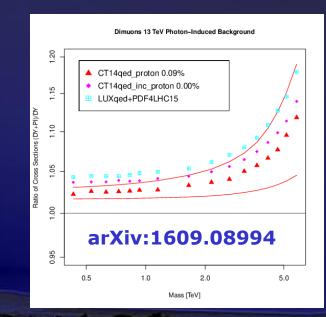

- NNPDF31 uses LHC data from Run I @ 2.76, 7 and 8 TeV
- Inclusion of Run II data in PDF fits
- NNPDF31: EW corrections (and photon induced processes) not included in fits => eliminates points
- Fitting the LHC data requires NNLO theory
- □ Tension between LHC and nuclear targets data (DIS, DY – deuterium: SLAC, BCDMS, NMC, E886, heavy nuclei: v data, E605). Precise determination of SM parameters ⇒ may be advantageous to use PDF sets produced excluding all nuclear data

Example: Relevance of Z p_T

 The impact of Z p_T data @ 8 TeV from ATLAS & CMS: improves the precision of g & s PDFs

 Overall g weight reduced by new ttbar differential cross sections
 arXiv:1706.00428





Loose Ends

E.g. the NNPDF31 fit uses NO EW corrections; kinematic cuts applied to exclude bins: EW corrections < experimental errors
 Photon induced corrections will become important in the push to the percent level, especially if moving away from the Z pole

DY

Outlook

- The Drell-Yan process provides a W/Z factory at the LHC and helps to test the SM to the highest momentum transfers
- □ Improved measurements and theory predictions key to refining the PDFs ⇒ for precision measurements and for searches, where DY is often the main irreducible background
- CMS has a rich and varied program of DY measurements: results at 8 and 13 TeV presented, many 13 TeV analyses in the works
- Only a handful used in PDF fits so far ⇒ more are available, and the expected new results will help to improve the proton PDFs and reduce further their uncertainties