User provided function for PHOTOS

S. Antropov

User provided function for PHOTOS

S. Antropov $^{1} \,$

The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland

Partly supported by the Polish National Science Center grant 2016/23/B/ST2/03927 and the CERN FCC Design Study Programme

CERN, 15 November 2018

Example 1

Example 2

Intruduction

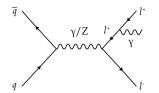
¹E-mail: santrop 2@yahoo.com

Motivation for my talk

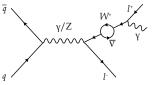
- ► Last year Viktor Zhabin was analyzing distributions in $Z \rightarrow l^+ l^- \gamma$ final states. There was an indication of a dip in $m(l^{\pm}\gamma)$ distribution at about 80 GeV: https://cds.cern.ch/record/2280876/files/SummerReport.pdf.
- Statistical significance of a dip was estimated at 3.5 σ level. These experimental data require attention, even if nothing public is available to show.
- ▶ I am involved in some work on PHOTOS Monte Carlo. This program use matrix element for $q\bar{q} \rightarrow l^+ l^- \gamma$ to generate final state bremsstrahlung.
- It was possible to implement into generator a C++ method to modify matrix element and observe how modification translates into properties of event sample.
- I will report on results of my activity.

User provided function for PHOTOS

S. Antropov


Intruduction

Example 1


Example 2

Introduction

- ▶ Series of events $pp \rightarrow Z/\gamma^* \rightarrow I^+I^-$ are generated by PYTHIA¹.
- Then some of two lepton final states are modified with PHOTOS² to be 2lγ states.
- PHOTOS, version allowing user provided modification, is used. Changes to kernel of Fig. 1a (like of Fig. 1b³) can be added.

a) Real photon emission: default.

b) Virtual W- ν correction to the real photon emission: user provided.

Figure 1. Corrections to Z decay to lepton pair.

¹T. Sjostrand, et al., Comput. Phys. Commun. 178, 852 (2008).

²N. Davidson et al., [http://photospp.web.cern.ch/photospp/];

in current study a version of PHOTOS dated 17.11.2017 is used.

³Viktor Zhabin, [https://cds.cern.ch/record/2280876/files/SummerReport.pdf].

User provided function for PHOTOS

S. Antropov

Intruduction

ixample 1

Example 2

Example 1.

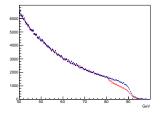
Ansatz of virtual correction inspired by opening of W- ν channel added into PHOTOS. It is roughly what diagram of Fig. 1b may bring¹:

$$F(M) = 1 - A \sqrt{\frac{M - M_W}{M_W}} \cdot \Theta(M - M_W), \qquad (1)$$

where M is invariant mass of the lepton pair, A is a parameter to be fixed/calculated, M_W is mass of W-boson. Ansatz is somehow following KLN theorem.

User provided function for PHOTOS

S. Antropov


Intruduction


Example 1

Example 2

¹Better one is expected soon from Alexey Kharlamov.

Example 1. Test

a) The numbers of the $e^+\gamma$ events with (red) and without (blue) W- ν -like correction depending on invariant mass of the $e^+\gamma$.

b) The ratio of the numbers of the $e^+\gamma$ events with and without W- ν -like correction depending on invariant mass of the $e^+\gamma$.

Figure 2. $10^7 pp \rightarrow Z \rightarrow e^+e^-$ events are generated by PYTHIA at 8 TeV. W- ν -like correction code has been tested for unrealistically large A = 1 used in formula (1). Radiation was generated by PHOTOS in the single photon mode. PHOTOS setup parameters are:

Photos::setPairEmission(false); Photos::setAlphaQED(1.0*0.00729735039); Photos::setInfraredCutOff(0.1645); Photos::maxWtInterference(4.0); Photos::setDoubleBrem(false); Photos::setQuatroBrem(false); Photos::setExponentiation(false); Photos::setMeCorrectionWtForZ(True);

User provided function for PHOTOS

S. Antropov

Intruduction

Example 1

Example 2

Example 2.

User provided function for PHOTOS

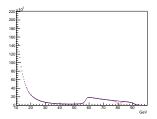
S. Antropov

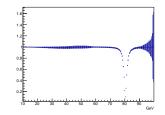
Intruduction

Example 1

Example 2

Summary


Pole approximation is chosen to incorporate resonance-like correction into PHOTOS. A factorized part of the amplitude writes¹:


$$F(M) = \left| 1 + A \frac{\Gamma_W M e^{i\phi}}{M_W^2 - M^2 - i\Gamma_W M_W} \right|^2, \qquad (2)$$

where M is invariant mass of the lepton pair, A and ϕ are parameters, M_W is mass of W-boson, $\Gamma_W = 2.085$.

¹It is taken from notes of Alexey Kharlamov.

Example 2. Test

User provided function for PHOTOS

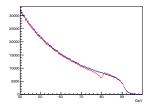
S. Antropov

ntruduction

Example 1

Example 2

Summary


a) The numbers of the $e^+\gamma$ events with (red) and without (blue) resonance correction depending on invariant mass of the $e^+\gamma$.

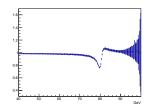

b) The ratio of the numbers of the $e^+\gamma$ events with and without resonance correction depending on invariant mass of the $e^+\gamma$.

Figure 3. $5 \times 10^7 pp \rightarrow Z \rightarrow e^+e^-$ events are generated by PYTHIA at 8 TeV. Resonance correction code has been tested for formula (2) and A = 0.7, $\phi = \pi/2$. Radiation was generated by PH0TOS in the single photon mode. PH0TOS setup parameters are:

Photos::setPairEmission(false); Photos::setAlphaQED(4.0*0.00729735039); Photos::setInfraredCutOff(0.4); Photos::maxWtInterference(4.0); Photos::setDoubleBrem(false); Photos::setQuatroBrem(false); Photos::setExponentiation(false); Photos::setMeCorrectionWtForZ(True);

Example 2. "Real" values

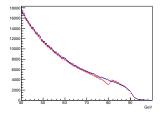
a) The numbers of the $e^+\gamma$ events with (red) and without (blue) resonance correction depending on invariant mass of the $e^+\gamma$.

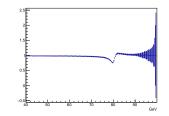
b) The ratio of the numbers of the $e^+\gamma$ events with and without resonance correction depending on invariant mass of the $e^+\gamma$.

Figure 4. $5 \times 10^7 pp \rightarrow Z \rightarrow e^+e^-$ events are generated by PYTHIA at 8 TeV. Resonance correction code has been tested for formula (2) and A = 0.16, $\phi = 2.514^a$. Radiation was generated by PHOTOS in the single photon mode. PHOTOS setup parameters are:

Photos::setPairEmission(false); Photos::setAlphaQED(1.0*0.00729735039); Photos::setInfraredCutOff(0.1645); Photos::maxWtInterference(4.0); User provided function for PHOTOS

S. Antropov


ntruduction


Example 1

Example 2

^aValues of these parameters are obtained from Alexey Kharlamov.

Example 2. "Real" values

User provided function for PHOTOS

S. Antropov

ntruduction

Example 1

Example 2

Summary

a) The numbers of the $\mu^+\gamma$ events with (red) and without (blue) resonance correction depending on invariant mass of the $\mu^+\gamma$.

b) The ratio of the numbers of the $\mu^+\gamma$ events with and without resonance correction depending on invariant mass of the $\mu^+\gamma$.

Figure 5. $5 \times 10^7 pp \rightarrow Z \rightarrow \mu^+\mu^-$ events are generated by PYTHIA at 8 TeV. resonance correction code has been tested for formula (2) and A = 0.16, $\phi = 2.514$. Radiation was generated by PHOTOS in the single photon mode. PHOTOS setup parameters are:

Photos::setPairEmission(false); Photos::setAlphaQED(1.0*0.00729735039); Photos::setInfraredCutOff(0.1645); Photos::maxWtInterference(4.0); Photos::setDoubleBrem(false); Photos::setQuatroBrem(false); Photos::setExponentiation(false); Photos::setMeCorrectionWtForZ(True);

Installation of user-provided matrix element.

- Into Z NLO ME user factor function can be introduced with the pointer:
- Photos::setMeCorrectionWtForZ(true); PhotosMEforZ::set_VakPol(exampleAnmalousCouplingsZNL0);
- where declaration format has to follow dummy function: double exampleAnmalousCouplingsZNL0(double qp[4],double qm[4], double ph[4],double pp[4],double pm[4],int IDE,int IDF) {return 1.0;}
- Factor provided by this routine
 ^{|M^{new|²}}/_{|M^{SM|²}} multiply internal weight
 of PHOTOS. User conventions for M^{new} and MSM are allowed.
- ► Incoming fermions of Z/γ* productions and outgoing leptons are used: 4-momenta and flavours.
- The spin state of intermediate Z/γ^* is constructed on flight.

User provided function for PHOTOS

S. Antropov

ntruduction

ixample 1

Example 2

Conclusions and things to do.

- Simulations of "real" spectrum including user-provided W-ν loop-like or resonance-like correction were demonstrated.
- So far I was using single photon mode of PHOTOS because I was testing. It is straightforward to switch multiple photon radiation.
- Then also a detector-response simulation is straightforward. Verification of significance of these modifications is easy.
- ► Further SM- or non SM-corrections can be introduced into PHOTOS simulation in the same manner.
- Option for PHOTOS where modification is introduced through event weights is envisaged.

User provided function for PHOTOS

S. Antropov

ntruduction

Example 1

Example 2

User provided function for PHOTOS

S. Antropov

Intruduction

Example 1

Example 2

Summary

THANK YOU FOR YOUR ATTENTION!