EPICS Collaboration Meeting June 2019 Contribution to Nominal Device Support V3 for standardizing device drivers

Moreno, Javier¹ (*jmoreno@gmv.com*); Ruíz, Mariano²; Melis, Stefano¹; de Gracia, Alberto²; Sanz, Diego¹; Esquembri, Sergio²; Astrain, Miguel²; Lange, Ralph³

² UPM. Technical University of Madrid, Instrumentation and Applied Acoustic Research Group ³ ITER International Organization

© GMV, 2019 Property of GMV All rights reserved

GRUPO DE INVESTIGACIÓN EN INSTRUMENTACIÓN Y ACÚSTICA APLICADA

Motivations

NDS overview

Contribution to NDS3

Use cases

Conclusions and references

S S C 0 Motiva

Evolution of EPICS MOTIVATIONS

- The higher the use of EPICS, the more support layers appear to ease IOC development
- Standardization claims to minimize IOC development efforts
- asyn drivers are typically more friendly than just device support
- areaDetector is based on asyn to interface with detectors and cameras, as well as devices providing waveforms
- NDS is a generic solution for device driver development

- NDS introduced the Device Model
 Based on *asyn* to provide common interface to EPICS IOCs
 Device drivers based on:

 Device
 - State machine
 - ChannelGroup
 - Channel
 - Image
 - Analog/Digital Input/Output
 - EPICS Libraries developed in C++

SW
User Space
Channel Access
NDS device driver
asyn
EPICS
System Libraries
Kernel Modules
Kernel
\$
HW

- NDS3 drivers do not depend on EPICS*
 - Based on its own Control System (*Factory*) with a common interface to IOCs
 - Device drivers based on:
 - Node
 - Port
 - State machine
 - PVs
 - Input
 - Output
 - C++11 libraries

SW
User Space
NDS device driver ²
NDS Control System
NDS device driver 1
NDS-CORE
System Libraries
Kernel Modules
Kernel
\$
HW

NOMINAL DEVICE SUPPORT V3

- The NDS Control System takes care of:
 - Registering device drivers
 - Creating device drivers instances
 - Communicating device drivers with rest of world:
 - Setting values
 - Getting values
 - Publishing values
 - Data sharing
 - Control System classes inherit from the target system. For instance: asynPortDriver

NDS3 drivers do not depend on EPICS* ...

* Unless NDS-EPICS is considered

gn

ZOU 50 \mathbf{O}

M

From a logical point of view:

- Existing elements:
 - nds-core
 - nds-epics
 - state machine
- External elements to interface with:
 - asyn
 - ITER-DAN
 - ITER-NISYNC
 - ITER-SDN
- Added support for:
 - Firmware
 - Routing -
 - Triggering and clocking
 - Data Acquisition .
 - Waveform Generation .
 - Digital IO .

Current class diagram:

- DataAcquisition: acquiring data
- DigitalIO: handling digital signals
- *FTE*: handling Future Time Events
- *Firmware*: providing typical parameters
- HQMonitor: providing Health and Quality parameters
- *Port*: providing communication with the control system
- Routing: routing signals
- StateMachine: handling states
- *Timestamping*: handling timestamps
- Timing: providing timing parameters
- WaveformGeneration: generation of waveforms
- TriggerAndClk: generating trigger and clock signals

CONTRIBUTION TO NDS3

Additionally:

- Documentation: User Manuals, API, Test Plan, Software Architecture and Design Document
- Sample device drivers
- Unit tests with *PyEpics*

Upcoming features:

- DAN nodes
- SDN nodes
- Data Scheduling nodes
- Removing dependencies from device drivers with data sharing

NDS3 5 S

USE CASES

Developed device drivers - DAQ: NI PXIe-6363 (UPM)

U D

CONCLUSIONS AND REFERENCES

- Conclusions:
 - Standardized development of device drivers
 - Independent Control System device drivers
 - Easy usability
 - High scalability
- Suggestions:
 - Adding support for image acquisition with *areaDetector*
- References:
 - Cosylab's repositories: <u>NDS3</u> and <u>NDS3-EPICS</u>
 - ITER's repositories: <u>NDS3-CORE</u> and <u>NDS3-EPICS</u>
 - ITER's documents: <u>NDS User Manual</u>, <u>NDS-EPICS Device Support Developer's Guide</u>
- Acknowledgments:
 - Technical University of Madrid, Instrumentation and Applied Acoustic Research Group
 - ITER International Organization

Auren De

THANK YOU

