NSLS-II 1-Wire System

Yuke Tian, Wing Louie

Presented by: Ibrahim Saleh

June 2019 EPICS Collaboration Meeting June 5, 2019

Power supply temperature monitor:

→ 144 sensors per rack group: approximate 9 power supplies, each PS contains 16 sensors. 3 PS rack group.

- → 144 * 3 racks/cell *30 cells = 12,960
- Magnet temperature(recently implemented) monitor:
 - \rightarrow 60 sensors per cell. 30 cells.

→ 60 * 30 =1800

• Monitors power supply 3Φ AC input current:

 \rightarrow 18 sensors/rack. 4 rack/group, 3 rack group for PS system (RGA to RGC)

- → 18 * 4 * 3 * 30 = 6,48
- Resets RCU micro and PSI FPGA to power up state:

→ 12 Reset switch per rack. → 12 * 4 * 3 * 30 = 4.320

Rack temperature and humidity monitor: (for all rack groups)
 → 4 per rack group. 6 rack group per cell: RGA to RGF.
 → 4 * 6 * 30 = 720

Total sensor counts: about 26,280.

How to accomplish this tasks with low cost ? RTD costs about \$30/sensor \rightarrow too expensive.

1-Wire System: Device and Network

NSLS-II 1-Wire System: 1st Generation

HA5-User Manual

ASCII RS232/RS485/TTL to 1-Wire® Host Adapter

HA5 DETIDNS

http://www.EmbeddedDataSystems.com

FEATURES

- ASCII command support for all 1-Wire devices.
- RS232, RS485 or TTL interface options.
- Parasitically (RS232) or externally powered.
- Automatically adjusts for variable 1-Wire bus conditions.
- Automatically provides smart strong-pull-up for sensors.
- 2000 feet, 200 devices per CAT-5 twisted pair 1-Wire bus.
- Supports up to 26 1-Wire networks per host serial port.
- User selectable Baud rates from 1200 to 115K Baud.
- User selectable address (1 of 26).
- User selectable error-check mode.
- RS232 version supports Broadcast Radio and Modem applications.
- Built-in DB9 for RS232/RS485/TTL interface.
- Optional RJ11 or screw-down 1-Wire bus interface connector options.
- Provides Search, Conditional Search and Family Search commands.
- Supports Touch Memory File Structure for iButtons.
- Automatically generates and checks CRC16 for TMEX files.
- Block mode commands support all 1-Wire device functions.
- ESD Protection more than 27kV~(IEC801-2 Reference Model.) on the 1-Wire bus.
- Optional enclosure.

DESCRIPTION

Sensors(slaves):

Temperature sensor: **DS18B20** Monitors Humidity: **Honeywell HIH 400** and **DS2438** Monitors power supply 3Φ AC input current **DS2450** Resets chip: **DS2406**

1-wire master: HA5

NSLS-II 1-Wire System: 1st Generation

BROOKHAVEN

NATIONAL LABORATORY | Light Source II

National Synchrotron

Benefits or advantages:

- Low cost: \$2/sensor
- Multiple slaves are accessed using only 2-wires in this interface type.
- The data rate of 16.3 Kbps(in standard mode) and 163 kbps (in overdrive mode).
- The interface: low power, low cost, easy to implement.
- The interface supports longer distance (about 300 meters).

Disadvantages:

- Though the interface supports longer distance, it is limited due to noise and cable capacitance.
- It supports slower speed of communication.
- 1-wire slave devices are manufactured by Dallas Semiconductor (Maxim Integrated) only.

NSLS-II 1-Wire System (1st Generation): softioc

StreamDevice EPICS Support - OneWire Protocol

```
#System variables
Terminator = CR;
LockTimeout = 3000;
WriteTimeout = 2000;
ReadTimeout = 2000;
ReplyTimeout = 2000;
reset {
   out "aR%0<sum8>";
   in "%s";
   @init {out "aR%0<sum8>";in "%s";}
read ids {
   InTerminator = "\r\r";
   out "aS,FF6C\x0d";
   in "%341c";
   @init {out "aS,FF\x0d";in "%s";}
###select the temperature one-wire sensor
sel id {
   out "aA%(\$1)s%0<sum8>";
   in "%19c";
   }
read temp {
   out "aA%(\$1)s%0<sum8>";
   in "%*s";
   out "aJ0144%0<sum8>";
   in "%*s";
   wait 100;
   out "aJ0ABEFFFFFFFFFFFFFFFFFFFF%0<sum8>";
   in "%s";
   3
```


NSLS-II 1-Wire System (1st Generation): softioc

Stream read block data \rightarrow aSub process \rightarrow write to PVs

ecord (waveform, "\$(Pri,undefined)\$(Sec,undefined)1{PS:FXYL2A-ASM:ACPA}T:Raw_\$(Chain,undefined)-Cmd")

```
field (SCAN, "Passive")
   field (DTYP, "stream")
   field (INP, "@Temp.proto read temp($(Pri,undefined)$(Sec,undefined)1{PS:FXYL2A-ASM:ACPA}ID:$(Chain,undefined).VAL) $(Port,undefined)")
   field (FTVL, "UCHAR")
   field (NELM, "23")
    field (TPRO, "1")
    field (FLNK, "$(Pri,undefined)$(Sec,undefined)1{PS:FXYL2A-ASM:2PSI}T:Raw $(Chain,undefined)-Cmd")
###calculate the temperature from the raw data inside aSub; detect CRC error, etc;
record(aSub,"$(Pri,undefined)$(Sec,undefined)1{PS:FXYL2A-ASM:ACPA}T:$(Chain,undefined)-ASub")
    field (INAM, "tempaSubInit")
   field (SNAM, "tempaSubProcess")
   field (INPA, "$(Pri,undefined)$(Sec,undefined)1{PS:FXYL2A-ASM:ACPA}T:Raw $(Chain,undefined)-Cmd CP")
   field (FTA, "UCHAR")
   field (NOA, "23")
   field (OUTA, "$(Pri,undefined)$(Sec,undefined)1{PS:FXYL2A-ASM:ACPA}T:$(Chain,undefined)-I")
   field (FTVA, "DOUBLE")
   field (NOVA, "1")
   field (TPRO, "1")
record (ai, "$(Pri,undefined)$(Sec,undefined)1{PS:FXYL2A-ASM:ACPA}T:$(Chain,undefined)-I")
   field (INP,"$(Pri,undefined)$(Sec,undefined)1{PS:FXYL2A-ASM:ACPA}T:$(Chain,undefined)-ASub.VALA CP")
   field (PREC, "2")
        field (EGU, "C")
   field (LOW, "")
    field (LSV, "MINOR")
   field (HIGH, "")
    field (HSV, "MAJOR")
   field (HYST, "1")
    field (TPRO, "1")
```


1-Wire System: CSS page of 1st Generation

		0.12111							
COMPUTER	RG-A Data	RG-B Data	RG-C Data	RG-D Data					
LINAC TO BOOSTER	RG-A Data	RG-B Data	RG-C Data	RG-D Data	RG-E Data	RG-F Data			
	RG-G Data	RG-H Data	RG-I Data	RG-J Data					
	RG L Data	BC M Data	RC N Data	BC B Data	RC O Data	RC RD D			
	RG-L Data	RG-M Data	RG-N Data	RG-P Data	RG-Q Data	RG-BD D			
Main Dipole	RG-03G	PSI	P52						
RF	RG-RFC D	RG-RFF D	RG-RFM Da						
CELL 01	RG-01A D	RG-01B D	RG-01C D	RG-01D D	RG-01E D	RG-01F D			Cell 01 Co
CELL 02	Power Sup	ply Temperatu	re	RG-02D D	RG-02E D	RG-02F D	RG-02G D		Cell 02 Co
CELL 03	Power Sup	ply Current		RG-03D D	RG-03E D	RG-03F D			Cell 03 Co
CELL 04	Rack Tem	perature and H	umidity	RG-04D D	RG-04E D	RG-04F D			Cell 04 Co
CELL 05	RG-05A D	RG-05B D	RG-05C D	RG-05D D	RG-05E D	RG-05F D			Cell 05 Co
CELL 06	RG-06A D	RG-06B D	RG-06C D	RG-06D D	RG-06E D	RG-06F D			Cell 06 Co
CELL 07	RG-07A D	RG-07B D	RG-07C D	RG-07D D	RG-07E D	RG-07F D			Cell 07 Co
CELL 08	RG-08A D	RG-08B D	RG-08C D	RG-08D D	RG-08E D	RG-08F D			Cell 08 Co
CELL 09	RG-09A D	RG-09B D	RG-09C D	RG-09D D	RG-09E D	RG-09F D			Cell 09 Co
CELL 10	RG-10A D	RG-10B D	RG-10C D	RG-10D D	RG-10E D	RG-10F D			Cell 10 Co
CELL 11	RG-11A D	RG-11B D	RG-11C D	RG-11D D	RG-11E D	RG-11F D			Cell 11 Co
CELL 12	RG-12A D	RG-12B D	RG-12C D	RG-12D D	RG-12E D	RG-12F D			Cell 12 Co
CELL 13	RG-13A D	RG-13B D	RG-13C D	RG-13D D	RG-13E D	RG-13F D			Cell 13 Co
CELL 14	RG-14A D	RG-14B D	RG-14C D	RG-14D D	RG-14E D	RG-14F D			Cell 14 Co
CELL 15	RG-15A D	RG-15B D	RG-15C D	RG-15D D	RG-15E D	RG-15F D	RG-15G D	RG-15H D	Cell 15 Co
CELL 16	RG-16A D	RG-16B D	RG-16C D	RG-16D D	RG-16E D	RG-16F D			Cell 16 Co
CELL 17	RG-17A D	RG-17B D	RG-17C D	RG-17D D	RG-17E D	RG-17F D			Cell 17 Co
CELL 18	RG-18A D	RG-18B D	RG-18C D	RG-18D D	RG-18E D	RG-18F D			Cell 18 Co
CELL 19	RG-19A D	RG-19B D	RG-19C D	RG-19D D	RG-19E D	RG-19F D			Cell 19 Co
CELL 20	RG-20A D	RG-20B D	RG-20C D	RG-20D D	RG-20E D	RG-20F D			Cell 20 Co
CELL 21	RG-21A D	RG-21B D	RG-21C D	RG-21D D	RG-21E D	RG-21F D	RG-21G D		Cell 21 Co
CELL 22	RG-22A D	RG-22B D	RG-22C D	RG-22D D	RG-22E D	RG-22F D	RG-22G D	RG-22H D	Cell 22 Co
CELL 23	RG-23A D	RG-23B D	RG-23C D	RG-23D D	RG-23E D				Cell 23 Co
CELL 24	RG-24A D	RG-24B D	RG-24C D	RG-24D D	RG-24E D	RG-24F D			Cell 24 Co
CELL 25	RG-25A D	RG-25B D	RG-25C D	RG-25D D	RG-25E D	RG-25F D			Cell 25 Co
CELL 26	RG-26A D	RG-26B D	RG-26C D	RG-26D D	RG-26E D	RG-26F D			Cell 26 Co
CELL 27	RG-27A D	RG-27B D	RG-27C D	RG-27D D	RG-27E D	RG-27F D			Cell 27 Co
CELL 28	RG-28A D	RG-28B D	RG-28C D	RG-28D D	RG-28E D	RG-28F D	RG-28G D		Cell 28 Co
CELL 29	RG-29A D	RG-29B D	RG-29C D	RG-29D D	RG-29E D	RG-29F D	RG-29G D		Cell 29 Co
CELL 30	PG-30A D	PG-30B D	RG-30C D	PG-30D D	PG-30E D	PG-30E D	PG-30G D		Cell 30 Co

1-Wire System: Power Supplies Temperature

CELL_0	1 - RACK A Powe	er Suppl	y Temperatur	e Sensors	:		
LOCATION	CHAIN 1		CHAIN	2	STATUS	ALARM	LIMITS
	SENSOR ID	ТЕМР	SENSOR ID	TEMP	CH1 -	HIGH	LOW
RG-A Rack 1{PS:FXYL2A-ASM:ACPA}	5900000334FB272	21.12 C	76000003351244	2: 21.31 C		30	10
RG-A Rack 1{PS:FXYL2A-ASM:2PSI}	6F000002F757EF28	23.06 C	0600002F72A70	23.06 C	•	30	10
RG-A Rack 1{PS:FXYL2A-ASM:2RC}	79000000DF10A42	23.00 C	920000009B775	52: 22.75 C	0	30	10
RG-A Rack 1{PS:QL2A-ASM:ACICM}	56000002B560352	28.12 C	6E000002B561D	12 28.12 C	۲	30	10
RG-A Rack 1{PS:QL2A-ASM:SGA}	8F00000336684228	31.38 C	7A00000336559	12: 31.38 C		30	10
RG-A Rack 1{PS:QL2A-ASM:1PSI}	BD000002F68BD52	22.19 C	0D000002F68023	32: 22.12 C	•	30	10
RG-A Rack 1{PS:QL2A-ASM:1RC}	2F0000009BC3652	23.06 C	95000000DF2A6	92 23.06 C	۲	30	10
RG-A Rack 1{PS:QL1A-ASM:ACICM}	AD000002B5A0922	32.00 C	6A000002B5A1C	D2 32.19 C		30	10
RG-A Rack 1{PS:QL1A-ASM:DLM}	EA0000038782B02	31.00 C	20000003878FAC	21 30.94 C		30	10
RG-A Rack 1{PS:QL1A-ASM:1PSI}	97000002F6888828	24.12 C	A3000002F661FF	28 24.19 C	•	30	10
RG-A Rack 1{PS:QL1A-ASM:1RC}	660000009B658F2	24.00 C	F10000009B8700	24.06 C	0	30	10
RG-A Rack 1{PS:CXYL1A-ASM:ACICM	4A000002B593542	28.75 C	8F000002B587E0	28.75 C	•	30	10
RG-A Rack 1{PS:CYL1A-ASM:XG-CH2}	310000009B80B92	27.50 C	71000009B6E44	42: 27.62 C		30	10
RG-A Rack 1{PS:CXL1A-ASM:XG-CH1	AD0000033525332	28.94 C	250000033520A	52: 28.75 C	•	30	10
RG-A Rack 1{PS:CYL1A-ASM:PA-CH2}	C50000033509A32	22.31 C	9E0000033510E	32: 22.31 C	•	30	10
RG-A Rack 1{PS:CXL1A-ASM:PA-CH1}	0000000334F4A32	23.56 C	1C0000033500D	52 23.56 C	۲	30	10
RG-A Rack 1{PS:CXYL1A-ASM:2PSI}	18000002B59D132	29.19 C	9E000002F75A98	321 29.06 C	۲	30	10
RG-A Rack 1{PS:CXYL1A-ASM:2RC}	D9000002F68FEC2	29.56 C	9A000002F6485	29.62 C		30	10

NSLS-II 1-Wire System: 2nd Generation

The **DS2483** is an I²C-to-1-Wire bridge device that interfaces directly to standard (100kHz max) or fast (400kHz max) I²C masters to perform protocol conversion between the I²C master and any downstream 1-Wire slave devices.

Typical Operating Circuit

1-Wire is a registered trademark of Maxim Integrated Products, Inc.

BROOKHAVEN

NATIONAL LABORATORY | Light Source II

National Synchrotron

19-4930; Rev 10; 1/15

NSLS-II 1-Wire System: 2nd Generation

NSLS-II 1-Wire System (2nd Generation): softioc

Python socket programing to get block data \rightarrow parse data \rightarrow write to PVs

```
except:
    print 'Sent getTempData failed, close socket and exit.'
    s.close()
    raise
print 'Magic word sent.'
print 'Waiting for data from the server.'
print 'Be patient, wait time can be as much as 60 seconds.'
# Try to receive all temp data.
# The first number is the total of characters of the entire message.
# The second number is import rethe number of sensors, follow by a comma.
# Magnet name (space) IDimport cothread
# The last number is the length of string, not counting the length number.
try:
    data = s.recv(1460)
    charNum = 1
    bufloop = 0
    while str(charNum) != ',':
        charNum = int(bufloop+1)
        charNum = str(data[(int(charNum)-1):(int(charNum))])
        bufloop = bufloop+1
    #print 'charNump=',charNum, 'bufloop=',bufloop
# Empty all the data. Each frame = 1460 bytes.
    charNum = int(int(data[:bufloop-1])/1460)
    print 'Total number of bytes is '+str(data[:bufloop-1])+'.'
    print 'Total number of frames is '+str(charNum+1)+'.'
    for dataframe in range (charNum):
        dataTemp = s.recv(1460)
        data = data + dataTemp
    print data
    # For EPICS to do something with all the received data here.
    print '---- EPICS program starts here on converting received data to PVs. ----'
    sl=re.split(" |,",data)
for i in range (1,26):
        loc='SR:C03-VA{1wire: '+"%02d"%i+'}T-I.DESC'
        location=caget(loc)
        index=sl.index(location)
        print index
        pv='SR:C03-VA{1wire:'+"%02d"%i+'}T-I'
        caput(pv,sl[index+2])
except:
    #print 'Failure on receiving all',str(numRead),'data. Close socket and exit.'
    print 'Failure on receiving all the data. Close socket and exit.'
    s.close()
    raise
# calculate for wait time to the next scan.
TimeDone = time.time()
TimeWait = ((TimeStart + loopTime) - TimeDone)
if TimeWait <= 0.0:
    TimeWait = 0.0
```


1-Wire System (2nd Generation): CSS OPI

		11:32:20	3/06/2019	0	t	: Lis	ures	erat	mpe) Te	RT	SR	ar 0	5— N LIGHT SOURC			
		ifts	RTD Dr														
	C03 1wire	C15	C14	C13	C12	C11	C10	C09	C08	C07	C06	C05	C04	C03	C02	C01	RTD
🔔 1-Wire(26	850.0	25.5	850.0	850.0	25.2	24.1	850.0	25.3	26.8	850.0	25.0	26.2	26.2	25.0	850.0	01
	26	850.0	25.8	850.0	850.0	25.2	23.8	850.0	25.5	27.0	850.0	26.3	27.0	25.8	24.7	850.0	02
	27	850.0	25.6	850.0	850.0	25.3	24.4	850.0	29.2	27.4	850.0	25.2	26.4	25.5	25.2	850.0	03
	26	850.0	25.7	850.0	850.0	25.3	24.1	850.0	29.5	26.8	850.0	26.2	25.4	25.2	26.8	850.0	04
	26	850.0	28.7	850.0	850.0	29.1	24.1	850.0	29.3	27.0	850.0	26.1	25.8	25.0	27.7	850.0	05
	26	850.0	25.7	850.0	850.0	26.2	23.6	850.0	26.7	27.5	850.0	850.0	26.0	25.3	850.0	850.0	06
RTD + PLC	26	25.5	25.2	25.7	27.8	25.7	24.9	25.1	26.3	26.4	25.5	850.0	26.6	26.6	850.0	25.2	07
	26	25.2	25.3	25.6	26.3	28.9	24.8	25.2	26.3	26.3	25.4	850.0	25.8	25.8	850.0	25.1	08
	21	29.1	29.0	28.9	25.7	25.8	27.1	29.2	25.6	25.8	25.2	29.1	28.9	28.8	29.0	29.2	09
	27	26 1	25.6	25.7	25.6	28.3	25.7	26.1	26.5	26.0	25.8	25.8	26.0	26.0	25.9	26.1	10
	26	26.1	25.8	26.1	26.1	27.5	25.5	26.0	25.7	26.5	25.6	25.9	26.0	26.1	26.0	26.0	11
	27	28.7	29.0	28.8	29.0	25.2	27.3	29.0	28.3	28.5	28.9	29.2	29.0	29.0	28.9	28.9	12
	28	0	0	о	о	0	0	о	0	0	0	0	0	0	0	0	AL
	26														. <u> </u>		
	27	C30	C29	C28	C27	C26	C25	C24	C23	C22	C21	C20	C19	C18	C17	C16	
	26	25.9	850.0	25.0	850.0	850.0	850.0	26.2	26.6	850.0	25.2	850.0	850.0	25.7	24.1	24.9	01
	29	25.8	850.0	25.5	850.0	850.0	850.0	26.0	26.6	850.0	25.3	850.0	850.0	26.8	27.4	25.2	02
	27	27.8	850.0	25.6	850.0	850.0	850.0	25.9	29.0	850.0	25.3	850.0	850.0	28.4	25.6	25.2	03
	28	27.3	850.0	29.0	850.0	850.0	850.0	28.9	28.5	850.0	25.4	850.0	850.0	28.4	24.1	25.1	04
	27	26.5	850.0	29.2	850.0	850.0	850.0	28.0	26.7	850.0	25.3	850.0	850.0	26.2	25.3	25.2	05
	26	27.1	850.0	26.0	850.0	850.0	850.0	27.4	27.6	850.0	26.2	850.0	850.0	27.0	25.2	25.1	06
	25	25.8	25.3	25.7	24.9	25.3	25.3	27.0	27.6	25.0	25.5	25.2	25.5	28.8	25.4	26.1	07
	25	25.2	25.7	25.7	24.7	25.3	25.3	27.8	27.1	25.3	25.0	25.2	24.8	29.1	25.6	25.8	08
	25	29.0	26.2	25.2	29.0	25.4	29.1	29.1	29.1	29.0	28.5	29.1	27.5	29.0	26.5	29.1	09
	26	26.1	25.9	25.7	25.5	25.8	25.6	25.7	26.7	26.3	25.7	25.8	26.5	26.0	26.2	26.1	10
		25.8	27.0	25.6	25.8	25.2	25.7	25.8	25.8	25.8	25.7	26.1	26.3	25.9	25.9	26.2	11
			a	25.0	20.1	25.3	29.0	29.0	26.2	25.6	28.6	28.8	25.3	25.6	29.0	25.5	12
		25.1	25.7	25.9	29.1	23.5	23.0	23.0			-0.0	- 0.0					

THANK YOU

