Project CRYVISIL(*) (to resolve glass dynamics)

- build up of a very high speed scanning tunneling microscope (VHS-STM)
- High data rate (up to 100 MByte/s for ~5hrs)
- EPICS Control System with VMEbus

(*)This project has received funding from the European Research Council (ERC) under the European Union’s Advanced Grant (AdG), 2014, ERC-2014-ADG
STM tip driven by piezo actuators

- traditional scanning (triangular for x-y)
- reverse movement at high speed leads to distortion
- new scanning with spirals

Ref: A New Scanning Method for Fast Atomic Force Microscopy
Iskandar A. Mahmood, S. O. Reza Moheimani, Senior Member, IEEE, and Bharath Bhikkaji in IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 10, NO. 2, MARCH 2011
FAST SCANNING TUNNELING MICROSCOPE

EPICS V4 inside

“fast STM” - control

- X, Y, Z (const. height)
- X, Y (coarse STM)
- I/V, LockIn, other
- Ethernet, ca: //, asyn
- Ethernet, pva://

- archiver appliance
- appliance

VMEbus
- Highland V375, 4-channel arbitrary waveform generator, 15 MHz point step rate
- struck SIS316, 16 channel digitizer, 14bit, 250 MS/s per channel, 64 MSamples memory/ch

MVME2500, QorIQ, 8GB, 4 Gbit/s Ethernet

MVME6100, PowerPC, 2GB, 2 Gbit/s Ethernet

Embedded With RE TEMS
www.tems.org

EPICS
Waveform generator Highland V375

- 4 independent direct digital synthesizer (DDS) frequency sources allow smooth variation of waveform scan rates
- 4 versatile, memory-table-driven waveform generators scan up to 65,536 discrete points per waveform at up to 15 MHz point step rate
- 16-bit amplitude resolution; 32-bit frequency resolution
- Output frequency, amplitude, phase, and DC offset are smoothly variable in real time
- Versatile wave memory partitioning allows waveform read/write operations concurrent with wave generation, so multiple waveforms can be loaded and selected in real time
Digitizer Struck SIS3316

- Single width 6U VME card
- 16 channels, 250 MS/s per channel, 14-bit resolution, 64 MSamples memory/channel
- Two programmable input ranges, 50 Ω or high impedance programmable, Offset DACs
- 125 MHz analog bandwidth, Internal/External clock
CPU MVME6100 (beatnik)

- 2eSST VMEbus protocol with 320MB/s transfer rate across the VMEbus
- MPC7457 PowerPC® processor running at up to 1.267 GHz
- 128-bit AltiVec coprocessor for parallel processing, ideal for data-intensive applications
- Dual Gigabit Ethernet interfaces for high performance networking
CPU MVME2500

- 800 MHz, 1.0 GHz or 1.2 GHz NXP QorIQ P2010 and P2020 processors
- 1GB or 2GB DDR3-800, soldered down
- Three on-board Gigabit Ethernet interfaces
- Five serial ports
- One USB 2.0 port
- One or two PCM/XMC site
Goal:
1 kHz / 5TP x 4
5 Mp x 4
20 Mp x 8 Byte
160 MB/sec

10 Hz Average Mode
4 x 64K (short)
→ read double
4.512 KB 10 4
\[= 20 MB/s\]

Highland Wavegen
VMEbus

Struck Digitizer
VMEbus

MVME 2500
RT/EMS S
PVR

MVME 6100
RT/EMS S

PVR
LAN

Control

CA
pva-PV on unix-python-server

```
epics@kannsein:~$ pvinfo CRYVISIL:STM:FASTSCAN:IMAGE_CHUNK
CRYVISIL:STM:FASTSCAN:IMAGE_CHUNK
Server: 141.14.133.59:41002
Type: structure
  structure value
    double[] column0
    double[] column1
    double[] column2
    double[] column3
string[] labels
string[] units
string descriptor
long counter
long uniqueId
structure[] attribute
  structure
    string name
    any value
    string descriptor
    int sourceType
    int source
double[] digitizerTimeStamp
structure timeStamp
  long secondsPastEpoch
  int nanoseconds
  int userTag
structure alarm
  int severity
  int status
string message
```

ca-PV’s on RTEMS-IOC

```
CRYVISIL:AWG0:Channel0:SetSource
CRYVISIL:AWG0:Channel0:SetClockDivisor
CRYVISIL:AWG0:Channel0:Delay
CRYVISIL:AWG0:DDSBB:SetDDSFreq
CRYVISIL:AWG0:Channel1:SetSource
CRYVISIL:AWG0:Channel1:SetClockDivisor
CRYVISIL:AWG0:Channel1:Delay
CRYVISIL:AWG0:DDSC:SetDDSFreq
CRYVISIL:AWG0:Channel2:SetSource
CRYVISIL:AWG0:Channel2:SetClockDivisor
CRYVISIL:AWG0:Channel2:Delay
CRYVISIL:AWG0:DDSD:SetDDSFreq
CRYVISIL:AWG0:Channel3:SetSource
CRYVISIL:AWG0:Channel3:SetClockDivisor
CRYVISIL:AWG0:Channel3:Delay
CRYVISIL:AWG0:Amp0:Amplitude
CRYVISIL:AWG0:AmpW:Offset
CRYVISIL:AWG0:Amp1:Amplitude
CRYVISIL:AWG0:AmpX:Offset
CRYVISIL:AWG0:Amp2:Amplitude
CRYVISIL:AWG0:AmpY:Offset
CRYVISIL:AWG0:Amp3:Amplitude
CRYVISIL:AWG0:AmpZ:Offset
CRYVISIL:SIS0:CH1:Offset
CRYVISIL:SIS0:CH2:Offset
CRYVISIL:SIS0:CH3:Offset
CRYVISIL:SIS0:CH4:Offset
CRYVISIL:SIS0:CH5:Offset
CRYVISIL:SIS0:CH6:Offset
CRYVISIL:SIS0:CH7:Offset
CRYVISIL:SIS0:CH8:Offset
```
• pvAccess driver receives NTNDArrays over the network, converts to NDArrays and calls plugins
• Can be used to run areaDetector IOC and plugins on another machine or in another process
• High performance:
 – ~1.8 GB/s shown here with interprocess communication

Info’s from Mark Rivers, Danke
Until you get this going, I've attached couple of short python files that should help you figure out if this is a python issue:
server1 generates PVA structures with a few waveforms and exposes these over its PVA channel, and server2 monitors this channel and serves the same data over the second channel. If I understood your use case correctly, this should be similar to what you are trying to do. Simply run server1 in one terminal, and server2 in another on the same machine in order to eliminate any network issues.

On my machine, which is about 2 years old and has Intel Xeon E5-2620 v3 @ 2.40GHz, with pvapy 1.6.0/epics 7.0.2.2/boost 1.70.0 and python 3.7 (installed from conda packages), I get the following results:

Server 1 generates data at over 50MB/s:
Runtime: 136.417 [s], Generated Arrays: 16400, Array Size: 491520 [B], 0.46875 [MB], Array Rate: 120 [Hz], Data Rate: 59090338.246 [B/s], 56.353 [MB/s]

Server 2 keeps up without missing anything:
Runtime: 99.694 [s], Received Arrays: 11900, Missed Arrays: 0, Missed Arrays Since Last: 0, Current Array Rate: 131.458 [Hz], Average Array Rate: 119.366 [Hz]
For the record, if I replicate setup #3, and have C++ IOC with area detector on one machine connected to python pvapy server on another machine over 10Gbps link, with 12MB arrays the pvapy server updates its database record at a rate of over 110 Hz, which means that the server is receiving data at a rate of over 1.2GB/s (it is keeping up with a fully saturated 10Gbps link).

Info’s from Siniša Veseli, Danke
In the meantime I have slightly tweaked my server1 example to use numpy arrays rather than python lists, which boosted its performance considerably. It can now generate/serve **data at a rates that exceed 1GB/s**. Not quite what area detector can do, but also quite usable for quick testing. On my machine, for example, I see this with 4MB arrays:

Runtime: 45.306 [s], Generated Arrays: 14000, Array Size: 4177920 [B], 3.984375 [MB], Array Rate: 309 [Hz], Data Rate: 1291005799.034 [B/s], 1231.199 [MB/s]

Info’s from Siniša Veseli, Danke
string channelName("CRYVISIL:STM:FASTSCAN:IMAGE_CHUNK");
string providerName("pva");

PvaClientPtr pva = PvaClient::get(providerName);
//pva->setDebug(true);
cout << "Update task -> channelName " << channelName << " providerName " << providerName << endl;
PvaClientPutPtr put(pva->channel(channelName,providerName, 3.0)->put("field()"));

Status status = put->waitConnect();
if(!status.isOK()) {cout << "createPut failed !!!
"; return;}

When I turn this on, I always get the message that the channel is connected twice.
To visualize data on iPhone/iPad Daviz is used.

- data read from the archiver on demand by JSON like:

```php
$url = "http://aa1.fhi-berlin.mpg.de:17668/retrieval/data/getData.json?pv=CRYVISIL%3AAAWG0%3AChannel0%3Awform";
$json = file_get_contents($url);
```
Still waiting for a release …

Epics 7 support available, used mainly with PPC (arm is working as well)

Funding of BSP - support (MVME6100, MVME2100, MVME3100 and MVME2500) by FHI

Funding of dynamic linker by HZB

For lack of time:
- line editing missing
- missing test on e.g. telnet support (and other network stuff)
- missing tests on intel hardware
- not well tested boot config from NVRAM
Some improvements (Danke Michael Davidsaver)

cry-test> rt help
help: The topics are
 all, help, misc, files, mem, rtems, monitor
cry-test> rt malloc
C Program Heap and RTEMS Workspace are the same.
Number of free blocks: 141
Largest free block: 164206288
Total bytes free: 164941976
Number of used blocks: 20338
Largest used block: 20000008
Total bytes used: 363718176
Size of the allocatable area in bytes: 528660152
Minimum free size ever in bytes: 162844968
Maximum number of free blocks ever: 179
Maximum number of blocks searched ever: 98
…