Singlet Scalar Dark Matter

Takashi Toma Technical University of Munich

Mini-workshop in Warsaw

Work in progress

In collaboration with Giorgio Arcadi, Oleg Lebedev, Stefan Pokorski

Dark matter

- DM exists in the universe.
- 26% of energy density.
- DM candidates: WIMP, axion, PBH etc.
- Boltzmann equation for WIMP: $\frac{dn}{dt} + 3Hn = -\langle \sigma v \rangle \left(n^2 - n_{eq}^2 \right) -15$

where Y = n/s, $\Gamma_{\rm ann} \equiv \langle \sigma v \rangle n_{\rm eq}$

Thermal eq. with SM particles \rightarrow freeze-out \rightarrow predictive (do not depend on what happened in early universe.) $x_f = m/T_f \sim 20$ (non-relativstic)

Singlet Scalar DM

Scalar potential

$$\mathcal{V} = \mu_H^2 |H|^2 + \frac{\mu_S^2}{2} S^2 + \frac{\lambda_H}{4} |H|^4 + \frac{\lambda_{HS}}{2} |H|^2 S^2 + \frac{\lambda_S}{4!} S^4$$

- Z₂ symmetry is impsoed. → simplest benchmark model of DM
 3 parameters: m_S = √μ_S² + λ_{HS}⟨H⟩², λ_{HS}, λ_S Higgs portal coupling λ_{HS}
- If λ_{HS} is not too small ($\lambda_{HS} \gtrsim 10^{-6}$), DM is thermalized with SM. \rightarrow compare $\Gamma_{HS} \equiv \langle \sigma_{HS \rightarrow HS} v \rangle n_H^{eq}$ and H (Hubble parameter).

if
$$\Gamma_{HS} > H \rightarrow$$
 thermalized
if $\Gamma_{HS} < H \rightarrow$ decoupled $(T' \neq T)$

Thermalized case (freeze-out) J. A. Casas et al., arxiv:1701.08134

- λ_S is irrelevant. \rightarrow 2 parameters
- Strongly constrained by direct, indirect and collider searches.
- Resonance region and $m_S \gtrsim 500 \text{ GeV}$ are still alive.
- Most of parameter space can be explored by LZ future experiment.

Non-thermalized case

- But thermalized case is not unique option
- If DM is not thermalized with SM, DM may be produced by freeze-in mechanism or freeze-in + self-interaction.
- Freeze-in mechanism

Freeze-in + self-interaction N. Bernal and X. Chu, arxiv:1510.08527

If λ_S is sizable, $SSSS \leftrightarrow SS$ process may be relevant.

- \rightarrow DM numbder density changes.
- $\Gamma_{4\to 2} \equiv \langle \sigma_{4\to 2} v^3 \rangle n_S > H$
- All computations have been done with non-relativstic approximation.
 - \cdot BE distribution \rightarrow MB distribution
 - · formula of thermal averaged cross sections

Freeze-in + self-interaction N. Bernal and X. Chu, arxiv:1510.08527

- · DM is thermalized in dark sector if $\Gamma_{4\rightarrow 2} > H$.
- Boltzmann equations

$$\frac{dn_S}{dt} + 3Hn_S = -\langle \sigma v^3 \rangle \left(n_S^4 - n_S^2 n_S^{\text{eq}2} \right)$$

Assumptions:

- Quantum statistics is neglected
 - \rightarrow Assume always Boltzmann statistics
- Initial condition: $n_S = 0$, $\rho_S = 0$.

 \rightarrow DM abundance is determined by freeze-out temperature ratio.

$$\langle \sigma_{4\to 2} v^3 \rangle = \left(\frac{6 \times 10^{10}}{\text{GeV}^8} \right) x_f^7 g_*(x_f)^{-3/2} \left(\frac{\text{GeV}}{m_S} \right)^4$$

 $x_f' = 17.4 + \log \left[\left(\frac{x_f}{x_f'} \right)^3 \left(\frac{m_S}{10 \text{ MeV}} \right) \left(\frac{10}{g_*(x_f)} \right) \left(\frac{x_f'}{17.4} \right)^{3/2} \right]$

Takashi Toma (TUM)

Freeze-in + self-interaction

N. Bernal and X. Chu, arxiv:1510.08527

- Energy injection from SM sector to DM sector due to $h \rightarrow SS$.
- $SS \rightarrow SSSS$ enters in dark thermal bath. $(\Gamma_{2\rightarrow4} > H)$ $\rightarrow n_S$ rapidly increases, T' decreases.
 - DM is in dark thermal bath $\rightarrow n_S = n_S^{eq}$.
- When DM is non-relativtsic, freeze-out occurs in DM sector as same as WIMP case.
 But different temperature T' ≠ T

Parameter space

- Constraint of Bullet cluster $\sigma_{
 m self}/m_S \lesssim {\cal O}(1)~{
 m cm}^2/{
 m g}$
- Small scale structure problems $ightarrow \sigma_{
 m self}/m_S \sim 0.1-1~{
 m cm}^2/{
 m g}$
- Calculated only when DM is non-relativistic.

Small scale problems

Cusp vs core problem N-body simulation infers cusp DM profile at centre of galaxies $\rho_{\rm DM} \propto r^{-1}.$

But rotation of spiral galaxies prefers core profile $ho_{\rm DM}\sim$ const.

Missing satellite problem 10⁹ Cusp Dark Matter Density (*M*_©/kpc³) etc 10⁸ arXiv:1705.02358. Tulin and Yu Core 10^{7} Possible solutions Add baryon contribution 10⁶ DM self-interaction 0.1 0.5 5 10 1

Radius (kpc)

We are interested in the following case

to be more natural and extend the parameter space

- **1** DM is initially produced by inflaton decay etc.
 - · previous case: $T' \leftrightarrow \lambda_{HS} \implies T' \leftrightarrow \text{inflation model}$
 - \cdot natural to consider inflaton couples with SM and DM
- 2 DM abundance is determined at semi-relativistic decoupling. One has to solve the Boltzmann equation numerically.
 - \rightarrow challenging task
 - · quantum statistics is not neglected.
 - · multi-dimensional integration (in particular $4 \rightarrow 2$ annihilation)

integrated Boltzmann equation:

$$\frac{dn}{dt} + 3Hn = \gamma_{2 \to 4} - \gamma_{4 \to 2} \quad \to \quad -\langle \sigma_{4 \to 2} v \rangle \left(n^4 - n^2 n_{\rm eq}^2 \right)$$

if non-rela.

Kinetic eq. and chemical eq.

If $SS \to SS$ scattering is faster than $H \to$ Kinetic eq. $\Gamma_{2 \to 2} > H$

 \rightarrow phase space distribution function $f = \frac{1}{e^{(E-\mu)/T} - 1}$

where μ is "effective" chemical potential If $SS \rightarrow SSSS$ process is faster than $H \rightarrow$ chemical eq. ($\mu = 0$) "effective" chemical potential can be understood as deviation from phase space distribution function in thermal eq.

Reasonable ansatz: $\mu = \begin{cases} 0 & \text{for chemical eq.} \\ m_S \left(1 - \frac{T'}{T'_f}\right) & \text{for chemical dec.} \end{cases}$

Kinetic eq. and chemical eq.

• Compare $\Gamma_{2\rightarrow 2}$, $\Gamma_{4\rightarrow 2}$ and H at $T' = 3m_S$ $\lambda_S \gtrsim 10^{-4}$ for $4 \rightarrow 2$ thermalization (chemical eq.) • $\lambda_S \gtrsim 10^{-8}$ for $2 \rightarrow 2$ thermalization (kinetic eq.)

Temperature evolution

Carlson, Machacek, Hall, Astrophys. J. 398 (1992) 43-52

- If each sector is thermalized separately, total entropy in each sector is conserved $S_{\rm SM} = s_{\rm SM} a^3 = {\rm const}$ and
 - $S_{\rm DM} = s_{\rm DM}a^3 = {\rm const}$ and $S_{\rm DM} = s_{\rm DM}a^3 = {\rm const}$
- Ratio of the entropy densities is also conserved.

$$\frac{s_{\rm SM}(T)}{s_{\rm DM}(T')} = \text{const.}$$

If the sector is thermalized, $s = \frac{\rho + p - \mu n}{T} \rightarrow s_{SM} = \frac{2\pi^2}{45}g_{*S}(T)T^3$ Evolution of dark temperature can be followed.

Full integrated Boltzmann equation

$$\frac{dn}{dt} + 3Hn = \gamma_{2\to4} - \gamma_{4\to2} \quad \to \quad -\langle \sigma_{4\to2} v_{\mathrm{M}\emptyset\mathrm{l}} \rangle \left(n^4 - n^2 n_{\mathrm{eq}}^2 \right)$$

if non-rela.

$$\begin{split} \gamma_{2\to4} &= \int d\Pi_A d\Pi_B d\Pi_1 d\Pi_2 d\Pi_3 d\Pi_4 (2\pi)^4 |\mathcal{M}|^2 f_A f_B \\ &\times (1+f_1)(1+f_2)(1+f_3)(1+f_4) \delta^4 \left(p_A + p_B - k_1 - k_2 - k_3 - k_4\right) \\ &= \int d\Pi_A d\Pi_B \left(\sigma'_{2\to4} v_{\mathrm{M} \otimes \mathrm{l}}\right) f_A f_B \\ \gamma_{4\to2} &= \int d\Pi_A d\Pi_B \left(\sigma''_{2\to4} v_{\mathrm{M} \otimes \mathrm{l}}\right) (1+f_A)(1+f_B) \quad \text{where} \quad d\Pi_i \equiv \frac{g_S d^3 p_i}{(2\pi)^3 2E_i} \end{split}$$

- $\sigma'_{2 \to 4} v_{M \emptyset l}$ and $\sigma''_{2 \to 4} v_{M \emptyset l}$ are modified cross sections including phase space distribution function.
- Multi-dimensional integration \rightarrow challenging to solve
- Numerically computed with CalcHEP.

Takashi Toma (TUM)

Møller velocity and CM velocity

- Møller velocity $v_{\text{Møl}} \equiv \frac{\sqrt{(p_1 \cdot p_2)^2 m_S^4}}{E_1 E_2}$
- If DM is non-relativistic, $v_{M \not o l} \approx v_{CM}$, and BE and FD distributions can be approximated with MB distribution.

$$\rightarrow \gamma_{\rm ann} = \langle \sigma v_{\rm Møl} \rangle n_{\rm eq}^2 = 128\pi^2 T \int \sigma_{\rm ann}^{\rm CM} E^2 (E^2 - m_S^2) K_1 \left(2\frac{E}{T} \right) dE$$

Gondolo and Gelmini, Nucl.Phys. B360 (1991) 145-179

where definition of thermal averaged cross section is

$$\langle \sigma v_{\text{Møl}} \rangle \equiv \frac{\int d^3 p_1 d^3 p_2 \left(\sigma v_{\text{Møl}} \right) f(p_1) f(p_2)}{\int d^3 p_1 d^3 p_2 f(p_1) f(p_2)}$$

 $\cdot \sigma_{\mathrm{ann}}^{\mathrm{CM}}$ can be computed at CM frame.

For our case, we change the frame with Lorentz transformation.

Thermal averaged cross sections

- A few factor difference for 2-to-2 scattering
- An order difference for 2-to-4 process
- Depend on parameters λ_S, m_S
- Thermal mass is included: $m^2 = m_0^2 + m_{
 m th}^2$ where $m_{
 m th}^2 = rac{\lambda_S}{24}{T'}^2$.

Summary

- **1** Singlet scalar DM is the simplest model.
- 2 Thermalized case is strongly constrained, and will be killed by future direct detection experiments.
- **3** DM can be thermalized only in dark sector with large self-interaction.
- We are interested in the case of dark sector thermalized by inflaton decay etc, and semi-relativistic or relastivistic decoupling.

Future works

1 More sophisticated analysis will be done.