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High Luminosity LHC (HL-LHC)

Starting in 2026, the LHC enters a new era

e 5-7x LHC original design luminosity

e Extensively upgraded, more complex detectors

e A 10+ year program of precision and discovery physics with a ten-fold
increase in integrated luminosity
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S&C challenges for the HL-LHC

e Up to 10x the event rate: much more data, and more complex events
e Pile-up of up to 200 proton-proton interactions per beam crossing
o Conventional tracking approaches lead to a combinatorial explosion
e Flat-budget hardware improvements fall well short of requirements,
extrapolating present computing model
o Must evolve our processing and data management approaches
e ATLAS is already today compute-limited in its science; computing must
scale with data volume and complexity or we leave physics on the floor
e Heavily data-intensive and distributed, and will become moreso
o Must feed our often 1/0-bound applications with data efficiently at scal
in the distributed environment
e HEP software is too serial for future architectures
o HEP codeis~1op/cycle, HPC code ~4, vector instructions up to 8
o Major re-engineering beyond multithreading required to maximize
benefit from modern & future CPUs (vectorization, pipelining,
accelerators)
e We cannot afford to buy our way out of the problem with hardware --
we must innovate in software
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2018 2025 2026 2027 2028 2029 2030 2031 2032
Max Luminosity (10%) 2.14 0 3 5 5 0 0 7.5 7.5
Integrated luminosity (fb!) 60 0 100 200 300 0 0 450 450
Number of data events 8B 0 40B 50B 60B 0 0 73B 73B
Running time 10° s 7.3 0 5.3 7 7.3 0 0 7.3 7.3
Average trigger rate (kHZ) 1 0 7.0 7.5 8 0 0 10 10
<mu> 40 0 100 140 140 0 0 200 200
MC events (B) 15 80 80 180 300 300 300 300 300
Fast/Total ratio 1/5 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 &
rage models used
Evgen HS06s 1000 1000 1000 1000 1000 1000 1000 1000 1000
For MC: Assume the size is 1.5x data
Full Sim HS06s 3250 4000 4000 4000 4000 4000 4000 4000 4000 Run two scenarios:
a) Parameterization as in the fit - 30% (AMSG-R3 goal)
Data Reco HS06s 230 800 800 1000 1000 1000 1000 1200 1200 b) “Reduced storage model”:
MC digi+reco HS06s 508 1600 1600 2000 2000 2400 2400 2400 2400 Reduced Storage model
- DAOD / AQOD ratio for MC = 0.31
FastChain HS06s -- 700 700 700 700 700 700 700 700 (eg 30% for derivations and 1% for a common analysis format) vs. 0.8
Davide Costanzo ATUAS weekly: HL-LHC fesource estimates 13-Noy-2018
- Only one version (vs 2 versions ) of MC AOD and DAOD is on disk.
1 copy for AOD and 2 copies for DAOD. Some work will have to be done from tape
- No copies of the previous year simulation kept on disk vs 1 AOD version from the previous year
- Only one version of current year data AOD vs 2 versions
(eg remove prompt-AOD from disk as soon as derivations available)
o
Davide Costanzo ATLAS weekly: HL-LHC resource estimates 13-Nov-2018
CERN
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ATLAS computing upgrades towards HL-LHC X
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2017
Run1:7-8 TeV, 0.7x1034 (u=20), 25 fb! LS1 Run 2:13 TeV, 1.9x1034 (u=55), 150 fb! LS2
2027
LS2 Run 3:14 TeV, 3x103* (u=80), 300 fb! LS3 Run 4:14 TeV, 7.5x103* (u=200), 3000 fb

Upgrade | Shutdown | LHC Luminosity Target | Main ATLAS S&C Changes

Phase-I 2019-21 2-3 x design* Multithreaded framework AthenaMT in production
Updated analysis model: study group active
LS2 Software upgrades for new detectors
Expanded role for fast simulation
First exascale HPC experience

HL-LHC 2024-26 5-7.5 x design*
(Phase-lI)
LS3

New tracking software capable of pileup 200
Fast HPC-optimized generators

Further expanded role for fast simulation
Wholesale integration of ML, accelerators, ...
“Data lake” based data + workflow management

* Original Luminosity Target =1x103*4 cm~s!
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Leaping over familiar ground

e Skipping (mostly) the challenges for CPU, for storage, the
complexities of HPCs, ...
o Moved to supplementary slides
e Going directly to:
o Walking through the WBS 2.4 “"HL-LHC Computing” structure
o How it is presently populated with R&D topics
o Where there is synergy with facilities
e Based on the draft WBS breakdown in our working document, to
which many have contributed, including of course the L3 managers
e | take responsibility for the specifics of what I'm presenting and how
I’'m presenting it: a view for discussion!
e ltis very early, all is open to change

CERN
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https://docs.google.com/document/d/1IgoPBUR74PGdn9jbYD-s_68jE4YHmjWClzmYb88ed9s/edit?usp=sharing

Organizing HL-LHC R&D in US ATLAS

How US ATLAS is organizing itself for HL-LHC R&D: the “HL-LHC Computing” WBS activity, WBS 2.4
Level 5 items appearing in the WBS are areas in which work is underway or soon will be

BROOKHIEVUEN

2.4.1 Software reengineering and algorithm development

2.4.1.1 Event generation

2.4.2 Workflow porting to new platforms
. 2.4.2.1 Common platform support infrastructure

2.4.3 Distributed computing development

2.4.3.1 DOMA (data organization, access and

o 2.4.1.1.1 Event generators on next-gen o 2.4.2.1.1 Performance measurement and management
HPCs monitoring o 2.4.3.1.1 Fine grained dataflows
2.4.1.2 Simulation ° 2.4.2.1.2 1/O infrastructure o 2.4.3.1.2 DDM integration for HPC
o 2.4.1.2.1 Fast calo sim on accelerators o 2.4.2.1.3 Information systems dataflows
o 2.4.1.2.2 Fast chain on accelerators o 2.4.2.1.4 Scalable Systems Laboratory o 2.4.3.1.3 Data movement, caching and
o 2.4.1.2.2 Machine learning for simulation o 2.4.2.1.5 Release installation tools access
2.4.1.3 Reconstruction o 2.4.2.1.6 Resource provisioning o 2.4.3.1.4 Services for storage tiering (SSD,
o 2.4.1.3.1 Algorithm development for . 2.4.2.2 HPC and exascale platforms disk, tape)
HL-LHC o 2.4.2.2.1 Implementation of reconstruction ° 2.4.3.1.5 Data lake and CDN services and
o 2.4.1.3.2 Algorithm development for workflows interfaces
accelerators o 2.4.2.2.2 Implementation of derivation 2.4.3.2 Workload and workflow management
2.4.1.4 Analysis workflows o 2.4.3.2.1 Fine grained workflows
o 2.4.1.4.1 Clusters designed for analysis o 2.4.2.2.3 Implementation of simulation o 2.4.3.2.2 Workload/workflow management
2.4.1.5 Framework and services workflows integration with DOMA
o 2.4.1.5.1 Adaptation of framework and o 2.4.2.2.4 Implementation of distributed o 2.4.3.2.3 Distributed training tools
services to handle accelerators training workflows 2.4.3.3 Analysis services
o 2.4.1.5.2 Development of EDM and data o 2.4.2.2.5 Adaptation of workflows to ° 2.4.3.3.1 Analysis support as a service
layout for accelerators and next-gen exascale 2.4.3.4 Common infrastructure
architectures . 2.4.2.3 Cloud, commercial and other platforms ° 2.4.3.4.1 Site standardization

2.4.1.6 Event I/O and persistency
o 1/0 planning will be elaborated soon

o

2.4.2.3.1 Commercial cloud R&D

o 2.4.3.4.2 Information services

As Kaushik said, distinctions with other parts of WBS are topical, not people;
same people share effort across this and other WBSes. ie: built for synergy 7
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R&D activities in our current WBS: 2.4.1 <, /

Bold: prospects for R&D synergy with Facilities

e 2.4.1 Software reengineering and algorithm development
o Event generators on HPCs. Requested effort to work on matrix element calculators usable by
multiple generators (starting with Sherpa). Couple to Taylor's SciDAC
o FastCaloSim and FastChain on HPCs and accelerators
m  Working group with BNL CSI underway to start addressing this
m Effort underway in ATLAS simu group on using ML (GANSs) in fast sim
e Reference for later: GANs are very CPU expensive. Benefit from distributed
learning.
o GPU-enabled reco algorithm development in AthenaMT
m Early stages of exploring how to develop GPU-enabled code in C++. Scott S, Attila have
reported in recent core software meetings. Early impression: tool stack is immature.
m Reco team is consumed between now and Run-3 with AthenaMT migration and ACTS
(new tracking) integration. Very little prospect of substantial new innovations reaching
production.
m  And even if GPU-enabled algorithms were integrated, how much of an improvement to
the overall walltime? How much GPU utilization? Also topics of study.
o Analysis: clusters designed for analysis.
m  Enormous synergy here in an exciting new area, as just discussed.
. &)

NS
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R&D activities in our current WBS: 2.4.1

e 2.4.1 Software reengineering and algorithm development - continued
o Event data model and data layout for accelerators, next-gen HPCs.

m Large synergy here with optimizing layouts/formats for transport/streaming on the
wire, data transformations in moving from disk->tape, how layout relates to
caching hierarchy, integrating (de)compression in workflows to hide latency, ...

o Event /O and persistency

m Loads of synergy

m Scalable intra-machine data flows and I/O on HPCs and exascale

m scatter-gather operations to supply processors with data and to collect data from
them

m Transient, persistent and streaming data organization to optimize for
HPC/exascale dataflows, streaming dataflows, GPU data formats and flows. (c.f.
layout above)

m Persistent data organization to leverage emerging storage platforms and
paradigms

m Storage footprint minimization consistent with efficient I1/0

CERN
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Parenthesis: Thinking outside the box

e Inthe HL-LHC S&C R&D meeting at UTA last month, had an interesting brainstorming session
e Discussed alternative to conventional AthenaMT

o Extract a GPU-capable algorithm (e.g. CaloCell creation) to a lightweight kernel that processes
all events in a task
Amortizes GPU overheads over huge number of events, gives GPU lots of work to do
Leverages AthenaMT as the overall orchestrator and to define algorithm behavior precisely
Straightforward (in principle) to validate: outputs identical to the original
If algorithm is standalone, why require that it's C++ with a weak GPU toolkit? Make it possible
to use python + SciPy, with excellent GPU support and performance?
e Would have big implications for workflow and dataflow

o Builds directly on our plans for event streaming service, but lots to build

o Deliver (only) the data needed for CaloCell building

o  Orchestrating the disjoint workflow of AthenaMT => standalone GPU stack => AthenaMT

m Do it dynamically as one workflow or in distinct stages?

e Felt by those in attendance to be worth some R&D
e Would certainly be fun and interesting, and would have synergy with Facilities

o Streaming data delivery of sub-events: basically let’s get going with event streaming

o Role of caching

o _Workflow orchestration CE/RW
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https://indico.cern.ch/event/771737/
https://docs.google.com/document/d/11DR0HALfe1_xLJ0Swo6d-KIvM8_N3zFUZfLWr7nL2nw/edit#heading=h.6cjzpyrcyzq

R&D activities in our current WBS: 2.4.2

e 2.4.2 Workflow porting to new platforms
o Fully synergistic
o This is really all about HPCs, at least at the moment.
o New workflows on existing machines
m Porting reco, derivations, fast simulation/fast chain, distributed training services,
... to existing machines
o New machines
m Porting all our HPC workflows to new HPCs
o Transition from 2.4 to Facilities is when a new development is production-capable and
begins integration, on its way to production and stable ops
o Near(ish) term specific examples:
m  Multi-threaded Geant4 in production on HPCs
m Reconstruction, derivation workflows on HPCs?
e With what priority? To what practical gain?
m Start playing with fast chain on HPCs as soon as there’s something to play with
m Distributed training service development over the next year

CERN
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HPC remarks

Why do we pay so much attention to them?

o Agency mandates, scale, compute-hungry culture
Why are they so difficult to use? So expensive in development effort and
labor?

o Not all of them are like this. European ones aren’t, NSF ones aren't.

o The DOE builds very big (too big to ignore) very complex machines that

weren’t designed to be readily usable for our computing

With our ATLAS culture of harvesting any and all resources we can find, and
on the foundation of distributed computing that can cope with the
heterogeneity, we've made ourselves experts at leveraging HPCs, despite the
difficulty
This has positioned us well for the “mandate” part, which is intensifying
dramatically
Now we have to become experts at using HPCs with accelerators

CE/RW
\
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HPCs in HEP: US DOE view

What We've Learned So Far

» HPC architectures will continue to evolve, but moving to vectorized, multithreaded
codes tailored to I/O-bound systems will result in higher efficiency codes
» Engaging HPC experts to analyze code has helped identify algorithm alternatives and data flow
bottlenecks, in some cases resulting in spectacular speedups (e.g. 600x). Continued
engagement is therefore essential!

» Need to identify which codes could benefit the most

factor-of-40 penalty in performance that will not be tolerated. HEP will lose its

allocations if it does this.

» Engaging Exascale Computing Project (ECP) experts early and often will result in faster
adoption of best practices for exascale machines, and influence ECP design choices to HEP's
benefit. HEP needs a coordinated interface to both ECP & the Leadership Computing Facilities.

» Need to identify which codes could benefit the most

1"

» “Business as usual” (minimal additional HPC use):
» With effective use of HPC resources this reduces to:

We must use them heavily
Updated HEP Computing Model

J In preparation for the Inventory Roundtable, the largest HEP
Using Exascale machines badly (e.g. by ignoring the GPU/accelerator) will result in a experiments from all three frontiers were asked to provide a

more detailed estimate of their expected computing needs
/) » CPU, storage, network, personnel, and HPC portability

$600M + 150M
$275M + 70M

v

LQCD regularly rewrites its code, has reaped significant speedup benefits every time . _
» By 2030 cost share by frontier is estimated to

v

Reinforced that multiyear NERSC allocations & better metrics for pledges are needed

v

End-to-end network data flow models are needed to support tradeoff analysis of » Y2 Intensity Frontier
storage vs. CPU vs. network bandwidth on a system-wide and program-wide basis » a Cosmic Frontier
» Greater sharing of the underlying data management software layer may also be beneficial

» A strategy encompassing
all HEP computing needs
is required!

%, U.S. DEPARTMENT OF Office of

@) ENERGY Science

DOE HEP Status at HEPAP - May 2018 28

» 2 Energy Frontier $inM HEP-Wide Computing Costs Fall 2017

be:

FAR
/’Efﬁcien
/ use of

/ HPC

7 ‘%] U.S. DEPARTMENT OF ‘Ofﬁce of

GY Science

We must use them properly

(use the accelerators) Jim Siegrist, HEPAP meetin

DOE HEP Status at HEPAP - May 2018

May 2018

BROOKHIVEN T. Wenaus December 2018
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https://science.energy.gov/~/media/hep/hepap/pdf/201804/JSiegrist_20180514_DOE_HEP_Status.pdf

Accelerator utilization

e DOE mandate drives an increased level of urgency to this, since
e We’re not in a position today to use accelerators at large scale in offline
o ATLAS has no offline production applications today that utilize GPUs
o Similarly for other LHC experiments (we're all working towards it)
e The DOE position and the reality of GPU-rich machines prompted US ATLAS action
e In June 2018 a new “HL-LHC Computing” activity area was created in US ATLAS
e lts first action was a workshop in July that brought together HPC experts from BNL's
Computational Science Initiative (CSI) and a team of senior ATLAS software
developer / physicists
o Tolook for GPU and ML applications for exascale and identify projects
e Then a followup meeting at UTA last month

CERN
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https://indico.cern.ch/event/742090/
https://indico.cern.ch/event/771737/

Leveraging Exascale + accelerators

e The workshop concluded that a promising route for ATLAS to exploit exascale in 2021
-- including, crucially, the use of accelerators -- is via ML applications, in particular
o Fast simulation, and particularly fast chain (fast all the way to analysis outputs)

e And, scaling ML applications to utilize large scale resources in order to minimize
#%, turnaround time in network development and tuning
X‘} o Distributed training to achieve fast turnaround
m Presents the possibility of bringing ATLAS workload management tools to

a9 bear (PanDA, pun not intended)
@!f m Large scale orchestration of parallel processing, with management of
associated data flows and metadata
e Accordingly, the workshop convened fast simulation, distributed training
working groups now underway

CERN
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Working towards exascale

e Simulating events in ATLAS is the largest CPU consumer: about 50%
e ATLAS Run-3 objective is to use fast simulation for most simulation needs
o Uses parameterised models of detector response (in particular
calorimetry) to achieve a 10x speedup
o ML, particularly GANs, well suited to developing high quality detector
response models, with projects now in development, e.g. CaloGAN
e Fast chain is the real target: adds fast reco to fast simu to make the whole

wwwwwwww

chain fast with reduced storage requirements and 1/O intensity not much Early results
worse than full simu, ie HPC compatible e
e Developing, tuning and (re)training of networks for these applications Siof pommomom L e
will be a compute intensive process that could be well-suited to exascale 4 olimar= 130 @av) i oae |
o Leverages the scale of the machine to minimize turnaround time 1 1
o Spiking for fast turnaround rather than steady state for large i H ﬂ@ o { ¢ .1¢ {
throughput N
o  Will the demands of training be enough to benefit from exascale? B ]
Anecdotally, seems to be yes, for GANs in particular 1'05; 1 1T

Sim./Ref.

°
ESN\\%

NN\

Can we benefit from exascale for fast simulation proper as well as training? A
o Will ML inference in a fast chain workflow use enough GPU to benefit P es T T TRST e e
from exascale? Would enable steady state, large throughput usage

CE/RW
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https://github.com/hep-lbdl/CaloGAN
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2018-001/

Distributed Training

1. Tensor operation parallelism:
GPUs, FPGA, and ASICs

(Google's Tensor Processing Unit). y Slelala
. S (PIPIP]P
 Note additional HN, Data, e |U|UJUJU

Model parallelism with multi-

ﬁﬁ

3. Data Parallelism:
Each GPU or
Node computes
gradient on sub-

set of data.
Synoing Niodel P ]I
gradients Model HP2

2. Hyper-parameter scan:

simultaneously train

multiple models. e.g. 1

Model HP1 Model HP>

model per GPU or node.

Model HPs Model HP4

L

111 [[ITT]

LTI

L]

| Part A

Model Part A Modk

Model

T

M

i

j

Model Part C__Model Part D

Model Part C

Model Part D

TEe==="—]
[ — o —

bottlenecked by

Model HP3
bus or network.

Model HP4

4. Model Parallelism: Large model spread
over many GPUs or nodes. Less network
traffic but only efficient for large models.

¢ Existing tools and techniques:
* Horovod: from Uber.

* MPILearn: from HEP colleagues at CalTech

[T |

1L

LTI |
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del Part A Model Part B

lodel Part A Model Part

—]
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Model Part C__Model Part D

Model Part C

|

Model Part D

Model HP;

=
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Model HP: |5

Model HP3

[

Model HP4

« From Giles’ group: https:/arxiv.org/pdf/1805.08469.pdf

* From LBL/NERSC colleagues: https://arxiv.org/pdf/1708.05256.pdf

* In general, scaling to large number of nodes can be difficult.

Gradient Energy Matching
for Distributed Asynchronous Gradient Descent

An MPI-Based Python Framework for [

ted Training with Keras

Deep Learning at 15PF: Supervised and

Thor
Patwary', Ta

Semi-Supervised Classification for Scientific Data

A Vision

* User sets up a training session in similar manner as current GRID submissions.
¢ Define resources required. e.g. CPUs / GPUs per training job.

¢ Define training data samples. Use Distributed Data Management system (i.e.
Rucio).

* Hyper-parameters and measured optimization metrics on test/validation samples
are book-kept and reported to PANDA via appropriate API.

¢ Hyper-parameter optimization can be either provided as part of service or run
externally via the API.

* Processing performance metrics (e.g. time per epoch) are also reported to the
system via APl and monitored.

¢ Trained Models and any results (e.g. plots), are stored in DDM.

o Identify 2 types of problem:

1. Quick training: few hours training times where large scale Hyper-parameter optimization is
warranted.

* Build out system for training submission, hyper-parameter management, and monitoring.

2. Long training: days/weeks of training where distributed training is warranted.

« Study scaling / speed up and integrate into system.

Amir Farbin, UTA

T. Wenaus December 2018 17
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R&D activities in our current WBS: 2.4.3

e 243 Distributed computing development
o Also fully synergistic; basically no daylight between 2.4 and 2.2
o Building a data delivery infrastructure from tape to disk to data lake CDN to caching
hierarchy to consuming client
m Data carousel as a joint Facilities/ DDM/WFMS system
e Should have a robust production at-scale version of data carousel by Run-3
m Data transformations during tape => disk to optimize layout/format for client
delivery
m Data (event) streaming, interaction with caches
m  What is the CDN?? What does it look like, what does it do, how do clients interact
with it?
m Event streaming service at data (server) and client (pilot) ends

o Data flows to/from HPCs
o New/extended metadata and information services in support of new workflows,

services, platforms
m e.g. in support of distributed training service

m  Metrics, monitoring & analytics

CERN
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Finally

e Many synergistic activities “now”
e They should involve everyone with interest and expertise
o The team is the same, share the fun
e Broad themes:
o Algorithms & framework
m Synergy mostly in data layout, I/O aspects particularly as needed for data streaming and
HPCs
m  Out of the box thinking: standalone GPU algorithm crunching
o Porting to new platforms
m Expanding to new workflows on existing machines and to new machines
o Distributed software
m Building the data delivery system, with tight interplay between DDM and WFM, from tape
drive to event streaming client consumer
e Build a full prototype data lake and play with it
m Extending the capabilities of our distributed software to new applications
e e.g. distributed training service

Sorry to not be there at ANL as I'd planned... talk to many of you next week!

CERN
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Some related activities & materials

e GPU hackathon series latest one this week at BNL (DOE sponsored)
ANL Aurora A21 early science program, ANL HEP selected for participation
e ATLAS /CSI workshop on development towards exascale, BNL, July 2018
o Simulation software: fast and full, Heather Gray
o Proposals, Amir Farbin
o Scaling DNNs using HPCs, Abid Malik
Data intensive science at LCFs, Jack Wells (ORNL), June 2018
BigPanDA for Titan and Summit early science program, A. Klimentov, July 2018
Connecting the Dots workshop series on advanced tracking
Kagale TrackML ML tracking challenge
IRIS-HEP kickoff workshop

CERN
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https://www.bnl.gov/gpuhackathon2018/
https://www.alcf.anl.gov/articles/alcf-selects-data-and-learning-projects-aurora-early-science-program
https://indico.cern.ch/event/742090/
https://indico.cern.ch/event/742090/contributions/3071864/attachments/1693200/2724726/hgray_bnl_simulation_talk.pdf
https://indico.cern.ch/event/742090/contributions/3071970/attachments/1693887/2726051/FutureComputing-BNL-CIS_copy.pdf
https://indico.cern.ch/event/742090/contributions/3081821/attachments/1694103/2726390/ATLAS_CSI_2018.pdf
https://indico.cern.ch/event/645594/sessions/273432/attachments/1640860/2620257/ATLASSWCWeek-Wellss.pdf
https://indico.cern.ch/event/587955/contributions/2937286/attachments/1683059/2705499/Klimentov_CHEP-Jul2018.pdf
https://indico.cern.ch/event/742793/
https://www.kaggle.com/c/trackml-particle-identification
https://indico.cern.ch/event/755573/timetable/

Supplemental

CERN
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Scaling to HL-LHC: Storage

ATLAS disk is already ‘always full’ before facing the HL-LHC shortfall
‘Opportunistic storage’ basically doesn’t exist
Working on format size reductions, but hard to achieve large gains
o 30% reduction is target of current study group
Replica counts already squeezed, hard to achieve large gains
Storage is our biggest cost component and biggest challenge. We
need new approaches!
ATLAS disk usage is % analysis formats and 5 everything else
A way to dramatically reduce our storage footprint is to grow the use

ATLAS disk usage today: %

of tape (it looks like our cheap storage will remain tape) analysis formats
o Use a ‘tape carousel’ approach for the analysis formats T1+T2 Disk occupancy by type (PB)
o A moving window of say ~10% staged to disk at any one time 120

This is hard: tape is slow and complicates workflow orchestration
o Analysis workflows are time critical and already complex o

Tape is geographically limited, while processing happens everywhere ,,
o Remote processing must be efficient
Fertile ground for R&D, now underway




Storage-directed R&D

e (US) ATLAS is a leader in advancing R&D to reduce storage needs
e Storage-directed R&D activities underway:
o Tape carousel workflows serving data from tape
m BNL Tier-1 has longstanding expertise in this from RHIC
m Leverages our workload manager PanDA’s tight coupling with data management
(Rucio) to orchestrate complex workflows
o Advanced xrootd based caching for efficiently distributing hot data
m US ATLAS co-leads the WLCG R&D in this area
m Xxrootd’s creator and project leader is in US ATLAS
o Event streaming service for fine-grained, optimized data delivery
m Next step in the development of the ATLAS event service
m Make full use of the network to economize storage
e Send only the data the consuming client needs
m Process data with WAN latency hiding to efficiently process data being streamed
from far away
o Leveraging commercial hot/cold data storage in a Google R&D collaboration

CERN
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The storage R&D goal: “data lakes”

Our sites are linked with (ever higher) high-bandwidth networking
o Networking is growing faster than our requirements; we must
make the most of it
Data lakes: integrated consolidation of distributed storage (and
compute) facilities, leveraging high-bandwidth networks
Data lake encompasses facilities with several levels of storage
o Tape, at a relatively limited number of sites
o Standard disk, at large storage repositories and smaller caches
o Fast SSD ‘edge cache’ for the hottest data

Data lake schematic

o Should be able to place data optimally based on (dynamic) need Data lake interactions
Workload management knows .the hot po.pular dat.a in use WM directives g\ Data to clients
o Use that knowledge to drive preparing data in the lake, Fast, high traffic SSD cache at the lake's

asynchronously to the processing, e.g. ‘edge’ serving hot data to consumers
m tape staging in a carousel workflow ||
m placing hot data in SSD cache ‘close’ to available CPU Readily 309f3§ib'ev %istfibﬁted disk
m transforming/marshaling data optimally for client delivery (EPOSTOTen ans Satnes
o Requires ‘QoS’ APIs supporting WM directives Cheap, slow, plentiful, but geographically
Instead of O(1) replicas on disk today, manage dynamic availability limited tape

of actively used data to achieve replica count <<1
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Streaming data from the lake

ATLAS is in the vanguard of developing innovative new fine-grained
streaming approaches to event processing

o Very good fit for the data lake model
The first phase, the Event Service (ES), is in early production for ATLAS
simulation
The next phase, the Event Streaming Service (ESS), is in early R&D
They are built on the solid foundations of PanDA, XRootD and Rucio
They allow agile, dynamic and automatic processing and data flows

o  Work goes to the optimal locations of the moment
They insulate processing from the latencies of the WAN

o Fetching data asynchronously and as-needed in near real time
They enable the full and efficient utilization of opportunistic resources and
HPCs

o Fine-grained processing is “the sand to fill the processing cracks”
They also open the door to the ultimate storage saver (at a CPU cost),
“virtual data”

o Don’t save it, just (re)generate it when you need it

o Feasible for “fast chain” simulation & reconstruction

ESS

25




Implementing streaming: granular event processing

e Event service + event streaming service = granular processing several benefits
o Fine grained work assignments: utilize CPU fully by “filling the cracks’
m Keep all multiprocessing cores busy all the time
m Keep a ramping-down grid site busy until it's offline,
o Fine grained inputs: stream remote inputs asynchronously
m Without the up-front latency and complexity of pre-staging big files
m  Without WAN latency impacting the processing
o Fine grained outputs: stream outputs asynchronously in quasi real time
m Avoid losing good data on a resource that vanishes (spot market cloud,
preemptible grid queue, BOINC)
m Hide WAN latencies, consolidate distributed outputs to one destination
e Streaming = copying small files, not a remote open and read across WAN
o Files are robust, cacheable, easier to diagnose when problems appear,
allows pre-marshaling of input data at the source =
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R&D prospects

e Event service: experience has proven the concept, flexible granularity is
worthwhile, but more work is needed to complete a clean implementation
o Goal: one ATLAS workflow with tunable granularity to optimize
o Currently implemented over a largely coarse-grained foundation
o Plan to re-engineer to fine-grained all the way down
m While preserving conventional mode
o Also enabling fine-grained mode for use beyond ATLAS??
e Event streaming service: intimately coupled to data lake (and 1/0) R&D
o Very early stage in ATLAS: good moment to team up
o ldeas outlined here nicely expanded in Data Lakes white paper from US
ATLAS (R. Gardner et al)
e Data management via Rucio: close ally in all this work. Intimate coupling
between workload management and data management
o Much commonality and collaboration in R&D
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R&D prospects

e Metadata management
o ATLAS Data Characterization and Curation (DCC) group consolidates
event metadata activities, with a substantial R&D component
m Bringing together established systems (e.g. AMI) and new
developments (e.g. Data Knowledge Base R&D)
o New R&D project important to granular processing is the Event
Whiteboard
m Database of event (more accurately, object) records with user
defined metadata, and collections of them
m Pursue as basis for metadata needs of event service, ESS, ...
m Ripe for commonality (avoid repeat of 7 different file catalogs 15
years ago :-)
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R&D prospects

e Understand optimal granularity for data management and access for all
storage tiers and workloads. What are the elementary data objects, how are
they aggregated, moved between tiers, served to the client.

e Related to ESS: storage-side intelligent data marshalling, informed by the
scientific content of the data and the client’s actual needs. What
transformations are applied to data, how, and where. How do they relate to
compression, and effective use of cache hierarchies. Virtual data support.

e |n latency hiding, data marshaling & packaging, compression management,
caching, ... how much do we do via ROOT

e Tape based data carousels with strong couplings between workload
management, DDM, storage for intelligent automation. How fast can they go.

e Data lake API and service design supporting workload management
automation and thoroughly isolating clients from special knowledge of storage
organization. A smooth, intelligent global CDN (or Data Delivery Networkg _
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R&D prospects

e Breaking co-location boundaries. How much will latency hiding & caching
allow us to relax co-location? Commonality in more relaxed brokerage?
o Continued value in preferentially processing close to data

For data lakes (among other things), lan

Bird and Simone Campana have started to
lay out an R&D timeline towards writing an
informed HL-LHC computing TDR in 2020

BROOKHIEVUEN

A. Data Lake

1.Distributed Storage
Infrastructure

2. Caching

3. Storage
Hierarchies

4. Workflows

2018

Workload management for cloud based analysis

Mine deep data on system operation for intelligent automation via ML
Good metrics to measure performance, efficiency and drive improvements
Scalable, uniform resource provisioning among dynamic diverse resources

2019

2020 2021

| Prototyping ||
1

Pre-Production

[ Deployment

| Prototyping | |
L)

Deployment

I; Consolidation

1
| Integration

|| Scale test

[ Consolidation

v v

v

| Integration (Existing Workflows)
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Near term benefits from long-view R&D

e Fine grained processing
o Full and efficient utilization of opportunistic resources
o Relaxing co-location, simplifying data placement and brokerage
e Data carousels
o Lessen pressure on storage resources
e Data lake
o Use prototypes to provide relatively low-volume but high-value functions like
hosting distributed analysis outputs in a robust, location-agnostic way
e Metadata
o More powerful tools for analysts to follow and annotate the course of
analysis work
e Next-gen resource provisioning
o Better control and knowledge flow between WM and resource to better match
resources to tasks and their requirements
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Solenoid

Toroid

Scaling to HL-LHC: Processing

Tracking presents the largest CPU challenge algorithmically for
HL-LHC
o Combinatorics of up to 200 overlaid pileup tracks
o Major R&D activity: fast, accurate tracking at high pileup
Calorimeter simulation is today the dominant CPU component
o Major R&D activity: fast calorimeter simulation
Common denominator to much of the R&D: machine learning
Other improvements underway:
o Performance optimization
o Further reconstruction optimizations
o Use of truth info in MC track reconstruction
o Pre-mixing of pileup events, reducing digitization time
Expect substantial use of HPCs, with data intensive requirements
from our use cases
o ATLAS apps are good HPC citizens: fully parallel MPI
applications, keeping every core busy for the full job duration
o But, demands reengineering sufficient to utilize them efficiently,
including their accelerators

< walltime/event > [s]

9

Calorimeter Muon System

2026, <mu>=200
ATLAS ID

T e
Reconstruction in rel. 21.0.37: designed for .

- high-mu run 335302 (2 051 jobs)

produced only single (AOD) output

ATLAS Preliminaj

““““““““““““““““““

o

L P>
ATLAS reconstruction time
dependence on pileup (mu), as
measured in data, showing
exponential rise due to inner detector
(ID) tracking combinatorics
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HPCs in ATLAS: deep experience & capability

widashbe

70000

Slots of Running Jobs

104 Weeks from Week 35 of 2016 to Week 34 of 2018

600kt

500,000 o
400,000 b=

300,000 b

200,000

100,000

Light blue: “special” HPCs, where
special means big, difficult to use, US 1.2M

ATLAS compute resources,
last 2 years, concurrent cores

A long history but
a new era in the
last year: very
large facilities, so
far in the US

Feb 2017 May 2017 9
itp:fcern chigo/sP8G

DOE
Dark blue: the grid

Yellow: cloud resources including concurrent cores.

(dominantly) HLT
Green: “regular” HPCs, meaning

easier to use, European or US NSF management system
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HPC only.
Next slide breaks down
what these facilities are...
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Our workload

is highly scalable!

e special
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78.16%

Grid: 78%
Cloud, HLT: 11%
HPC special: 7%

HPC regular: 4% Cw
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e Compiler/code/build based improvements

O

©)
©)
©)
©)

Investigating (typically unused) advanced compiler features
Reducing shared library overheads by building large libs instead of loading many small ones
AutoFDO feedback guided optimization
Looked at Geant4, reconstruction code, NLO generators (the newer slower ones)
Several 15-20% CPU improvements (not all can be combined)
m HEP code very sensitive to compiler switches; requires substantial physics validation

e Code profiling shows up to 25% of time spent in memory management

O

Allocation and de-allocation of small, very short lived objects
m 10% can be saved with refactorization

e Hardware counter based analysis: HEP code ~1 op/cycle, HPC code ~4, vector instructions up to 8

O

O
O
Overall estimate of potential sw performance gains without changing paradigms & algorithms: 200%

O

BROOKHIVEN T. Wenaus December 2018

100% improvement should be feasible, leveraging vector units, with considerable work: substantial
code changes, high level skills

Overlap with GPU utilization work

ALICE HLT tracking code re-design for GPUs also produced huge gains on CPUs with vector units

50% at moderate cost _
from Markus Schulz and the cost model working group CE/RW
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Generative Models @

Competitions Datasets Kernels Discussion Learn <+«

kaggle

Search kaggle

LHC

e Every Experiment is Exploring: ATLAS, CMS, LHCb, ALICE

$25,000

Generative models for fast cluster simulation @ALICE

Most computational expensive step in
simulation is the particle propagation
= avoiding the step using generative

Amir Farb

models
Method MSE(mm) speedup
GEANT3 0.085 1 H
e esimsna R 1SN Fast calorimeter simulation @ LHCb Now in the throughput challenge phase
GAN-MLP 55.385 104 https://competitions.codalab.org/competitions/20112
GAN-LSTM 54.395 104 o =
VAE 37.415 104 * 2
Sampler To explore what our universe is made of, scientists
DCGAN 26.18 102
€ Evaluation at CERN are colliding protons, essentially
SVAE 1383 [ o recreating mini big bangs, and meticulously
| proGAN 0.88 30 Timeline observing these collisions with intricate silicon
:' = Prizes detectors.

Energy resolution

Prize Money

in, July 2018

While orchestrating the collisions and

Cross experiment, DOE supported
https://heptrkx.qithub.io/

A Common Tracking Software (Acts)
http://acts.web.cern.ch/ACTS/ https://indico.cern.ch/event/742793/

////A

CTD/WIT 2019

Connecting the Dots and Workshop on Intelligent Trackers

IFIC, Valéncia, Spain
2nd - 5th April 2019

AR
“\\\\.\\\\\\\\\:\\“'

Connecting The Dots / Intelligent Trackers 2019

about| HEP advanced tracking algorithms with cross-cutting applications (Project
HEP.TrkX)

summary | This is an HEP/ASCR DOE pilot project to evaluate and broaden the range of
computational techniques and algorithms utilized in addressing HEP tracking
challenges. Specifically the project will provide a framework to develop and
evaluate new algorithms for track finding and classification, that will be
demonstrated by applying advanced pattern recognition techniques to track
candidate formation. For example, an optimized track formation algorithm that
scales linearly with LHC luminosity, rather than quadratically or worse, may lead by
itself to an order of magnitude improvement in the track processing throughput
without affecting the track identification performance, hence maintaining the
physics performance intact in the LHC upgrades.

Common ground for collaboration:

e |ML machine learning forum across the LHC experiments
e Community wide HSF software forum
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Community collaboration

e No single experiment can go it alone in evolving HEP S&C for the future
e HEP Software Foundation (HSF) created in 2015 to facilitate cooperation

and common efforts, particularly in concurrency and reengineering H F
e HSF coordinated the writing of a community roadmap (arXiv 1712.06982)

and series of white papers for HEP S&C that identified R&D directions

across the field A
e Informed by the community roadmap... 3 ;?
o The Worldwide LHC Computing Grid (WLCG) is coordinating g 7S
development of an HL-LHC computing plan, and organizing common \WWL.CG
R&D activities in distributed computing
o US NSF has established a far-sighted, broadly scoped project,
IRIS-HEP, to pursue R&D directions in innovative algorithms, data
management and analysis tools & approaches
e Other such initiatives hopefully coming!

Institute for Research and Innovation in Software
in High Energy Physics (IRIS-HEP)
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HSFE established in 2015 to facilitate coordination and
common efforts in software and computing across HEP
in general

Charged by WLCG to address R&D for the next decade
70 page document on arXiv (1712.06982)

13 topical sections summarising R&D in a variety of

technical areas for HEP Software and Computing
o Backed by topical papers with more details also

(e.g. 50-page detailed review about Detector
Simulation)

1 section on Training and Careers

310 authors (signers) from 124 HEP-related institutions

Feature article in CERN Courier

More details on the HSF web site

. HSF-CWP-2017-01
HEP Software Foundation Roadmap for Software . ...1er 15, 2017

and Computing R&D in the 2020s
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HL-LHC R&D Collaborations: Google

U
S
ATLAS
*» Google-ATLAS Proof of Concept demonstration project
= Data transfers and PanDA jobs shown to work transparently
between Google cloud and WLCG sites
= Results presented at NEXT 2018, CHEP 2018 and many talks at CERN

«» Expanded R&D projects started in 5 new working groups
= Track 1: Data Management across Hot/Cold storage
= Track 2: Machine learning and quantum computing
= Track 3: Optimized I/0O and data formats
= Track 4: Worldwide distributed analysis
= Track 5: Elastic computing for WLCG facilities
«* All 5 groups co-led by US ATLAS and Google members

«» Active interest and participation from international partners
= CERN IT, CERN Openlab, WLCG, Tokyo U, UK & EU institutions...

Kaushik De, UTA
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