SSL for ATLAS

Scalable Systems Laboratory for Innovation & Integration

Rob Gardner Enrico Fermi Institute University of Chicago

US ATLAS Computing Facility Meeting @ Argonne December 5, 2018

IRIS-HEP SSL Purpose

- Provide the Institute and the HL-LHC experiments with scalable platforms needed for development in context
- Provides access to infrastructure and environments
- Organizes software and resources for scalability testing
- Does foundational systems R&D on accelerated services
- Provides the integration path to the OSG-LHC production infrastructure

SSL: Path to Production

Provisioning of software **environments** and development tools.

Distributed platforms

materialized with tools like containerized edge services.

Integration point with the OSG and LHC experiment services (data, analysis).

SSL Team & Resources

- Small core group to support base environment
- Dynamically draws effort from R&D pillars
- Interfaces to OSG-LHC and LHC Ops
- Organizes leveraged resources needed to scale

Components and Practice

- A number of core IRIS-HEP SSL services will be defined resulting from requirements gathering
 - Shared (cross-experiment, cross-pillar) dev environment
- The SSL can support the HL-LHC R&D activities of WBS 2.4

Example: DOMA simulators

- Major theme in
 WLCG-DOMA is R&D
 on new data
 architectures capable
 of HL-LHC scales
- SSL to facilitate prototyping

Example: systems R&D

- Another major theme is system scalability R&D
- In DOMA this might be a hardware accelerated intelligent data delivery service
- In AS this might be used in a declarative or "low-latency" analysis platform

System Scalability for IRIS-HEP (Chien) System Scalability for IRIS-HEP (Chien)

A Cloud Example: Data Analysis

- · Iterators over all objects in an S3 bucket
- S3 select
- · Interesting: Pricing and business model (when you own the endpoints and network COST)

Hardware Acceleration: Big Wins

UDP Hardware Implementations

64-lane UDP	ASIC (28nm)	FPGA (Arria 10)
Frequency	1GHz	40MHz
Resource	8.7mm	109K ALM,

From A. Chien at impromptu IRIS-HEP discussion meeting at UChicago 9/7/18

https://indico.cern.ch/event/75 5728/

System Scalability for IRIS-HEP (Chien)

September 7, 2018 15

System Scalability for IRIS-HEP (Chien)

September 7, 2018 16

What does this mean for IRIS-HEP?

- Distributed Data Lake, Shared General Data format (across experiments)
- · Scalable analysis pulls data from Lake, and ships to computing resources [analysis]
- · Variety in analysis experiments and data use and availability of compute resources IMPLIES large data movement

Example Research Topics

- Programmable hardware acceleration [10-100x size reduction
- => Can dramatically increase System scalability and HEP application science capability

Scenario:

Develop new third-party copy software (TPC)

Requires three orchestrated four orchestrated services plus control host

Labeled, reproducible:

Micro deployment

WAN deployment

Scaled deployment

SSL and ADC development

- The SSL can provide a shared development and integration platform
- No dedicated hardware must be able to dynamically assemble resources for testing, then return to production
- Next year will be figuring out how to do this smoothly

