
Shared Physics Analysis 
Facility @ BNL (Tier-3)

Overview and Plans

William Strecker-Kellogg
<willsk@bnl.gov>

USATLAS Workshop at ANL
Dec. 2018



Timeline / Overview

2

2015 - consideration of what would required to support a shared Tier-3

Initial design mirrored our condor pool at the Tier-1, using group quotas to 
map people's home institutions instead of panda queues.

Old interactive analysis hosts for BNL and some soon-to-be-retired batch 
nodes that we rolled into a new pilot Tier-3.

Present - improvements and growth (130+ users, 29 institutions)



Compute+Storage Resources

● SSH Gateways and NX servers available
● 12 interactive login nodes for job submission
● Batch: ~2200 CPUs providing 22.5k HS06

○ 2-3Gb/core
● 1Gb network non-blocking for each node
● Various Storage Technologies; per-user...

○ 5Tb Storage in dCache
■ Access through pNFS interactively, xroot on batch

○ 500Gb GPFS space
○ 20Gb NFS home-directory area

3



4

● Similar picture for the last 6 months as well
○ Occupancy lower than could be wished
○ Could benefit from more aggressive backfill* (more on this later)
○ Shared pool migration will address occupancy issues (next slide) Last week's usage



Shared Condor Pool Migration

● See first half of this talk from HTCondor Week for more technical details
● General Idea: Move from several large pools to 1 (STAR, PHENIX, ATLAS, 

T3)
○ Current situation: Star + Phenix: 34kCore, Tier1: 20kCore, Several Smaller Pools
○ Goal: One single pool utilizing group-quota model for share (quota=contribution)

■ Without namespace conflicts, allows "grafting" of groups into each other
○ Reasoning: better sharing of resources between stakeholders, improved utilization
○ Need agreement on common policy parameters (time / size limits)

● Secondary Goal: partitionable slots everywhere
○ Tier-3 will get this so no need for dedicated high-memory or multicore slots
○ Preemption Issues:

■ HTCondor currently has major issues with starvation of multicore jobs by lower-priority 
single-core queues

● No reservations, stateless matchmaking
■ Solution: no preemption, everyone agrees on runtime parameters

● Tertiary Goal: easier administration

5

https://agenda.hep.wisc.edu/event/1201/session/13/contribution/20/material/slides/0.pdf


Shared Pool Migration Status

● Initial shared pool with static slots and 
no quotas (excessed ATLAS 
hardware)

○ 7kCores
○ Good usage with "flocked" RHIC jobs
○ Hardware will be repurposed into new model

6

● Submit nodes will push jobs into shared pool first, then flock back to 
existing experiment hardware (if they retain any)

● Transition ongoing, will begin in earnest next week
● SPAR timeline TBD...



Backfill

● Lack of preemption is an issue for backfilling slots
○ How to kick out backfill work
○ What are reasonable expectations of latency to access one's own resources

● Conversation with Jarka + other CERN folks + Condor team about this last 
week

● Move to shared pool exacerbates this, May need an external component that 
intelligently drains or evicts susceptible jobs

○ Condor 8.8 will have a new "backfill" job-type that can fill in defragmenting nodes

7



Interactive Analysis

● Existing paradigm:
○ Split work between interactive and batch resources
○ Batch 100x-1000x size of interactive

■ Users sufficiently motivated to (learn to) use batch systems
■ Intuitively understand workflow:

● Develop, compile, test, small-scale run, data movement, all on interactive nodes
● Workflow processing done on batch

● New paradigm: Jupyter
○ Expanding interactive toolset
○ Lower barrier of entryーboth for learning curve and user-base

■ Learning curve
● SSH, Shell, Batch Systems, etc... "steep" for some newer users
● More a problem in domains without such a long tradition of large-scale computing

○ Life Sci, Photon Sci, etc...
■ Userbase: supporting external users

● From other domains, growing need to support external users
○ More a problem for institutions with a strict security posture

8



Jupyter at BNL

● I will be leading this effort in the new calendar year
○ Project is far wider than just ATLAS, however SPAR will be a "ideal" user

● Common solution for HTC and HPC resource access
○ Significant challenges, will touch on the HTC part for now (and common parts)

Very early plans below!

● How to grant access:
○ Front-end authenticating proxy landing page

■ Choose running model (HTC / HPC, Local, Batch, etc...)
■ Get running instance appropriate to your security zone

● Internal users get full access to our environment
● External? Isolated in container, no POSIX FS access, storage by API/Token only

○ Scratch area? Home?
● This is a radical departure from cyber-security norms!

○ Batch system (next slide)

9



Jupyter Batch Spawner

● Let's apply the same paradigm here!
● Small cluster of directly-launched jupyter instances

○ Load-balanced from a frontend proxy?

● Containers at this level? Why?
○ Better to support choice of user-environment via containers, no need for scheduling with 

container orchestration
○ (biased statement) Many, many attempts at "scheduling" as an afterthought in a project, 

almost always done poorly! Just use a batch system...

● Batch System!
○ HTCondor and Slurm support running a jupyterlab session as a batch job!
○ Containers can enter at the batch level to isolate external people
○ Or can be based on the choice of environment
○ Open questions:

■ Latency, cleanup, starvation

10



Experiment Environments / Containers

● (opinion) Containers solve the problem of different user environments, not the 
problem of scheduling / deploying units of compute

● When you get a jupyter session, what environment are you in?
● Create a "default" env by cloning our native farm-image

○ The one on the current farm nodes

● User choice at portal for which environment to start?
○ Local jupyter: spawn in container, access software in shared area
○ Batch spawner: batch system container layer to spawn

● No orchestration needed, but, whose problem is setting up the environments?
○ Collaborative between admins and experiment software folks

11



Integrating Jupyter with Compute

● How to make it easier to use 
compute from Jupyter?

○ See second half of talk referenced 
on slide 5

○ Abstract away using a batch system
○ Experimental code I wrote

● Goal: abstract away the fact that 
you are using a batch system at 
all

○ Either through trivial substitutes
■ map()→condormap()

○ Or (better) through cell "magics"
■ %slurm or equivalent

12

https://github.com/fubarwrangler/jupyter-condor/tree/master/condor


Integrating Jupyter with Compute

● Collaborating with Swan folks at CERN
○ Had a Google SoC student make a really nice JS UI for job tracking
○ Used Ganga integration

■ We are looking into how to integrate HTCondor with this or do something similar
■ Ganga "api" make some assumptions that are not good for HTC

● Have a student intern part-time who may work on this

13

https://amanpratapsingh.in/gangaextension/


Conclusions

14

1. Consolidating condor pools == a good thing for efficiency
a. SPAR is a good candidate to participate in this

2. Jupyter is attractive for users; much work to be done integrating "new" 
paradigm into traditional HEP environments

Things I'd Like to Discuss

1. Jupyter deployment: pip, conda, containers?
2. Security: getting sign-off on mingling of web and interactive domains?

a. External users (federation)?

3. New users: what technologies can be used to effectively isolate the 
vulnerable parts of your environment from untrusted users



SPAR-Visible Next Steps

1. Set up user-accessible local Jupyter platform
a. Users can start playing here
b. Enable batch-spawner for scaling load "depth"
c. Scale load "width" via cluster of jupyter-enabled submit nodes

2. Develop front-end enhancements for selecting environment / type
a. Will need to be able to select ATLAS environment among choices here

3. Work on "glue" tooling between Jupyter and ATLAS Environment

15


