Luminosity Measurement

11th FCC-ee Workshop CERN, 8-11 January 2019

Mogens Dam Niels Bohr Institute Copenhagen, Denmark

Luminosity Measurement

◆ Standard lumi process is small angle elastic e⁺e⁻ (Bhabha) scattering

Dominated by t-channel photon exchange

Very strongly forward peaked

$$\sigma^{\text{Bhabha}} = \frac{1040 \text{ nb GeV}^2}{s} \left(\frac{1}{\theta_{\min}^2} - \frac{1}{\theta_{\min}^2}\right)$$

Measured with set of two calorimeters; one at each side of the IP

Crossing beams: Center monitors on outgoing beam lines

- Two counting rates:
- SideA = NarrowA + WideB
- SideB = NarrowB + WideA
- Minimize dependence on beam parameters and misalignment:
 - Average over two counting rates: SideA + SideB

□ Important systematics from acceptance definition: *minimum scattering angle*

$$rac{\delta\sigma^{
m acc}}{\sigma^{
m acc}} \simeq rac{2\delta heta_{
m min}}{ heta_{
m min}} = 2\left(rac{\delta R_{
m min}}{R_{
m min}}\oplusrac{\delta z}{z}
ight)$$

Alternative Lumi Processes

Possible alternative lumi process: Large angle photon-pair production

Only "one" graph at lowest order

Current precision at NLO at the 10⁻³ level [C.M.C Calame, FCC-ee workshop, Pisa, Feb. 2015]

□ Pure QED process with few radiative corrections between initial legs and propagator

- Cross section is much smaller than small angle Bhabha scattering, but adequate everywhere but at Z-pole running. Provides interesting x-check at Z-pole.
- \Box Main experimental background: Large angle Bhabha scattering (e⁺e⁻ \rightarrow e⁺e⁻)
 - > O(10) larger than signal. Have to control Bhabha contamination to $\sim 10^{-6}$
- **\Box** Example: $\theta > 20^{\circ}$ with respect to the beam axis (cos $\theta < 0.94$):

Energy	Process	Cross Section	Large angle e⁺e⁻ → γγ	Large angle e⁺e⁻ → e⁺e⁻
90 GeV	$e^+e^- \rightarrow Z$	40 nb	o.o39 nb	2.9 nb
160 GeV	$e^+e^- \rightarrow W^+W^-$	4 pb	15 pb	301 pb
240 GeV	$e^+e^- \rightarrow ZH$	o.2 pb	5.6 pb	134 pb
350 GeV	$e^+e^- \rightarrow tt$	o.5 pb	2.6 pb	6o pb

Mogens Dam / NBI Copenhagen

Alternative Lumi Processes

Possible alternative lumi process: Large angle photon-pair production

Only "one" graph at lowest order

Current precision at NLO at the 10⁻³ level [C.M.C Calame, FCC-ee workshop, Pisa, Feb. 2015]

□ Pure QED process with few radiative corrections between initial legs and propagator

- Cross section is much smaller than smallen the Bhabha scattering, but adequate everywhere but at Z-pole.
- □ Main experimental background: Large angle Bhabha scattering ($e^+e^- \rightarrow e^+e^-$)
 - > O(10) larger than signal. Have to control Bhabha contamination to $\sim 10^{-6}$

\Box Example: $\theta > 20^{\circ}$ with respect to the beam axis (cos $\theta < 0.94$):

Energy	Process	Cross Section	Large angle e⁺e⁻ → γγ	Large angle e⁺e⁻ → e⁺e⁻
90 GeV	$e^+e^- \rightarrow Z$	40 nb	o.o39 nb	2.9 nb
160 GeV	$e^+e^- \rightarrow W^+W^-$	4 pb	15 pb	301 pb
240 GeV	$e^+e^- \rightarrow ZH$	0.2 pb	5.6 pb	134 pb
350 GeV	$e^+e^- \rightarrow tt$	o.5 pb	2.6 pb	6o pb

Mogens Dam / NBI Copenhagen

Normalisation to 10⁻⁴

- ◆ The goal at FCC-ee is an absolute normalization to 10⁻⁴
- After much effort, precision on absolute luminosity at LEP was dominated by theory
 Example OPAL most precise measurement at LEP:

Theory: 5.4×10^{-4} Experiment: 3.4×10^{-4}

□ Since then, theory precision has improved to 3.8 × 10⁻⁴

- [Jadach et al, 1812.01004]
- Ambitious FCC-ee goal: Total uncertainty to precision of 10⁻⁴
 - Will require major effort within theory
 - Four graphs already at lowest order

- Dependence on Z parameters (increasing with angle)
- $\boldsymbol{\ast}$ Lots of radiative corrections between initial and final legs
- Will require major effort experimentally
 - Second generation LEP luminosity monitors constructed and

monitored to *tolerances better than 5 \mu m*

Relative Normalisation

• FCC-ee goal: Via Z line-shape scan, determine Z parameters to precisions:

 δM_Z = 100 keV; $\delta \Gamma_Z$ = 100 keV \leftarrow

Plot shows relative change in cross section across Z resonance for parameter variation of this size

- Z width measurement most demanding: Need relative normalisation to about 5 × 10⁻⁵
 Need statistics of order 10⁹
 - \square To optimize sensitivity of off-peak running, aim for cross section ~ σ_Z ; i.e \gtrsim 10 nb

LumiCal Design

Mogens Dam / NBI Copenhagen

LumiCal Design

100

80

60 40

20

-20

-40

-60

-80

-100

-120

-140

-160

-20

0

20 40

- W+Si sandwich: 3.5 mm W + Si sensors in 1 mm gaps¹⁰⁰
 Effective Moliere radius: ~15 mm
- ◆ 25 layers total: 25 X₀
- Cylindrical detector dimensions:

□ Radius: 54 < r < 145 mm

□ Along outgoing beam line: 1074 < z < 1190 mm

Sensitive region:

```
□ 55 < r < 115 mm;
```

- Detectors centered on and perpendicular to outgoing beam line
- Angular coverage (>1 Moliere radius from edge):

□ Wide acceptance: 62-88 mrad

Narrow acceptance: 64-86 mrad

- □ Bhabha cross section @ 91.2 GeV: 14 nb
- Region 115 < r < 145 mm reserved for services:

LumiCal Geometrical Tolerances

• Acceptance depends on inner and outer radius of acceptance definition

 \square Aim for construction and metrology precision of 1 μm

Acceptance depends on (half) distance between the two luminometers

- Situation is somewhat more complicated due to the crossing beam situation
- \Box Now, it is the sum of distances, $Z_1 + Z_2$,
 - which has to be known to 110 µm
- Idea to be pursued: Alignment using tracking detector as intermediate:
 - IP/tracker: dimuon events
 - LumiCal/tracker: laser tracks

Alignment relative to IP position

• With 2 mrad difference between **narrow** and **wide**, the acceptance depends to only second order on displacements of IP relative to LumiCal system for displacements up to

 $\delta r = 0.5 \text{ mm}$ transverse and $\delta z = 20 \text{ mm}$ longitudinal

Should dispacements be larger, need to redefine narrow and wide

• Within these tolerances, the acceptance depends rather weakly on IP displacements

$$\frac{\Delta A}{A} \approx + \left(\frac{\delta r}{0.6\,\mathrm{mm}}\right)^2 \times 10^{-4} \qquad \text{and} \qquad \left|\frac{\Delta A}{A} \approx - \left(\frac{\delta z}{6\,\mathrm{mm}}\right)^2 \times 10^{-4}\right|$$

- Conclusion: Optimal situation is if interaction point is centered wrt LumiCal coordinate system within the following tolerances:
 - Few hundred microns in radial direction
 - Few mm in longitudinal direction

Geometry considerations

- Most critical parameter is inner radius of acceptance which has to be controlled to a precisio of ~1 μm
- LumiCal is compact: Outer radius of Si sensors is only 155 mm
- This opens the possibility to construct each Si sensor from one crystal only

 \square Geometrical precison given by wafer production: Far below 1 μm

 However, we have to be able to mount monitors around beam pipe

Critical issue: Vertical assembly

- Possible alternative?? (inspired by idea by Anton Bogomyagkov)
 - Thread luminosity monitors onto beam pipe from end before complete beam pipe assembly is installed inside detectors?
 - Avoid vertical division...?

Beam-background: Synchrotron Radiation

Tungsten shielding of beampipe effectively blocks synchrotron radiaiton

Beam-background: e⁺e⁻ pairs (i)

- e⁺e⁻ pairs created in beam-beam interactions
 Dominant process at FCC-ee: Incoherent pair production
 Events studied/generated by GuineaPig program
- Example: Z-pole energy
 - □ 800 e[±] particles per BX (with E > 5 MeV)
 - □ 500 GeV radiated in total per BX

Energy of pair e[±] particles - Average energy: 636 MeV

- # e[±] per BX per endcap: 404

Polar angle of pair e[±] particles

- Peak at zero along beam line
- Bump around 30 mrad: focussing by other beam

Energy weighted polar angle of pair e[±] particles - Strongly forward peaked

Beam-background: e⁺e⁻ pairs (ii)

- Radited e[±] particles tend to be (very) soft
 Strong focussing by detector solenoidal field
- Helix extrapolation study (no material effects):
 # particles hitting LumiCal face: 0.3 per BX
 Energy hitting LumiCal face: 60 MeV per BX
- Compare to full GEANT4 simulation
 Energy hitting LumiCal: 300 MeV per BX

 Factor 5 above helix study

 Energy mainly concentrated at inner radius at rear of calorimeter

 Secondaries scattered from beam pipe split(?)
 - Would be easy to shield by thin layer of W
 - Study ongoing

G. Voutsinas

Beam-background: e⁺e⁻ pairs (iii)

Beam-gas background

- At LEP, off-momentum particles from inelastic beam-gas scattering was the main background process to the luminosity measurement
- FCC-ee simulation of beam-gas scattering at Z-pole energy has been performed
 - Loss rate inside region of ± 2.1 m around IP of

2 MHz/beam @ 10⁻⁹ mbar of N₂ at 300 K

- First study of effect on LumiCals: From beam pipe exit point, simple straight line extrapolation to face of opposite LumiCal
 12% extrapolate to opposite LumiCal face
 Energy tends to be low and they leave early
 Will be effectively stopped by shielding
 From this: Estimate of coincidence rate before
 - any energy or angular cuts: < 10⁻⁷ per BX
 - Negligible compared to Bhabha rate:
 6.4 x 10⁻⁴ per BX
 - Background seems to be negligible

To be checked through full simulation study

O. Blanco, F. Collamati

Mogens Dam / NBI Copenhagen

Electromagnetic Focussing of Bhabha electrons (i)

- Well-known *pinch effect*: beam particles are focussed by the strong electromagnetic field of the opposing beam
- By the same, mechanism also (forward) scattered particles are focussed

First described in 2007 for ILC in JINST 2 Po9001

- Important effect at FCC-ee where average focussing angle over the LumiCal acceptance is about 30 µrad.
- This is equivalant to a change of the effective acceptace of LumiCals of -15 X 10⁻⁴

i.e. 15 times the goal on the luminosity measurement precision

With which precision can we correct for this effect?

Studies by G. Voutsinas by use of GuineaPig++

Electromagnetic Focussing of Bhabha electrons (ii)

- Introduction of beam crossing angle (30 mrad) introduces an asymmetry
 - □ Particles scattered towards inside of FCC-ee ring (φ = o) spend more time close to opposing beam: Focussed more
 - □ Particles scattered towards outside of FCC-ee ring ($\varphi = \pi$) are further away from opposing beam: Focussed less
- How could this be exloited:
 - A φ-symmetric focussing leads to a broadening of the acollinearity distribution of Bhabhas by ~10 µrad. Far below experimental resolution (~200 µrad); not likely to be observable
 - A φ-dependent focussing leads to a φ-modulated non-zero average acollinearity distribution which may be measurable (~25 µad effect / ~200 µrad resolution event-by-event)
 - \Box In case φ -dependent part is proportional to the full effect, this may be a way to measure effect

Electromagnetic Focussing of Bhabha electrons (iii)

- On-going study
 - Construct observable which is sensitive to φ modulation of acollinearity angle
 - here a counting rate asymmetry)
 - Vary beam parameters randomly
 - * Population; offset x, y; bunch dimensions σ_x , σ_y , σ_z
 - * Find that, luminosity primarily depends on bunch population and σ_z
 - Study shows an approximate linear dependence of luminosity correction on the measured asymmetry parameter
 - However, a similar 25 μrad acollinearity bias will be also produced by a ~10 μm mis-alignment in x of the the IP position wrt the LumiCal system.
 - Such misalignment will however create a cosineshaped modulation of counting rates in azimuth
 - But will the focussing effect not do the same?
 - Studies ongoing to attempt disentangling of focussing effect from alignment

Conclusion / Summary / Outlook (i)

- Very precise normalization needed to match the fabulous statistics of FCC-ee.
 Goal:
 - □ Absolute to **10**⁻⁴
 - □ Relative (point-to-point Z line shape scan) to 5 × 10⁻⁵
- Large angle $e^+e^- \rightarrow \gamma\gamma$ scattering is an interesting process to be studied
- Small angle $e^+e^- \rightarrow e^+e^-$ scattering is the main "workhorse"
- Zeroth order LumiCal design exists. Many challenges remain:
 - \square Geometrical precision of construction and metrology to 1 μm level
 - Positive: Compact devices Si sensors for each (half-)barrel from one crystal
 - Support and alignment to order of 100 micron precision
 - Pursuing idea to support "from the back" independently of machine magnets
 - Front-end-electronics
 - ✤ Fast (20 ns) shaping within tolerable power budget
 - ✤ Large dynamic range: sensitivity to *mips* (muons for alignment) and EM showers.
 - Cooling keep temperature constant within 1 degree for geometrical precision
 - Equipment for alignment
 - **u** ...

Conclusion / Summary / Outlook (ii)

 Beam-backgrounds have been studied through full GEANT4 simulation and/or parametrisations – mostly find that backgrounds are small / negligible

Synchrotron radiation effectively stopped by beam-pipe shielding to **negligible** level

- Beam-beam interactions produce large background of e⁺e⁻ pairs
 - At $\sqrt{s} = 91.2 \text{ GeV}$: 800 particles / 500 GeV per BX
 - At $\sqrt{s} = 365$ GeV: 6200 particles / 9000 GeV per BX
 - Most particles are very soft and strongly focused below LumiCal acceptance
 Into each LumiCal points:
 - At $\sqrt{s} = 91.2 \text{ GeV}$: 0.3 particles / 0.06 GeV per BX
 - At $\sqrt{s} = 365$ GeV: 15 particles / 3.2 GeV per BX
 - Validation via full Geant4 simulation:
 - At $\sqrt{s} = 91.2$ GeV, this background is small and most likely negligible
- First study of off-momentum particle background from beam-gas scattering
 Negligible
- Focussing of Bhabha electrons by magnetic field of opposing beam
 - □ Significant bias (15×10^{-4}) to the luminosity acceptance. Correction needed!
 - Ongoing study: Analyze effect and possibly identify handle for correction