

Expected performance of the IDEA dual-readout calorimeter

G. Gaudio INFN-Pavia

11th FCC-ee workshop: Theory and Experiments 8–11 January 2019

$e+e- \rightarrow HZ$ physics constraints

- + H → γγ → ECAL resolution
 - As good as possible at least $20\%/\sqrt{E}$ + 1%
- ← $H \rightarrow qq$, $VV \rightarrow ECAL+HCAL$ resolution
 - ✦ As good as possible at least 3-4% on jets from W,Z decay

$e+e- \rightarrow Z/WW$ physics constraints

- Additional EW physics drivers:
 - High precision acceptance determination
 - Good $e/\gamma/\pi^0$ discrimination

- π^0 important in tau and HF physics
 - No π^0 : 35% $\tau \rightarrow 1$ (e, μ) $\nu\nu + 20\% \tau \rightarrow (1,3)\pi^{\pm} \nu$
 - ♦ 1 π^0 : 28% τ→(1,3) $\pi^{\pm}\pi^0$ lv
 - ♦ 2 -3π⁰: 10% τ→π[±](2,3) π⁰lv
 - High granularity/Pre-shower $\rightarrow \pi^0$ identification
 - Overlap with π^+ may require longitudinal segmentation

- Alternate clear and scintillating fibers in metal matrix
- Scintillating fibers sensitive to all charged particles
- Clear fibers sense only Cherenkov light
 - Mostly electrons and positrons

Fiber pattern RD52

Dual Readout Calorimeters main features

- Designed to optimize EM, hadronic and jet resolution
 - Large sampling fraction for good EM resolution
 - Event by event correction for EM fluctuations in showers and jets
- Intrinsic transverse granularity up to I-2 mm
- Potential for longitudinal segmentation with timing or specific fiber geometries
- Particle ID capabilities
- ✦ Fast detector response
- ✦ All electronics in the back simplifies cooling and access

- Demonstrated EM resolution
- Observed Had resolution dominated by lateral leakage (~6%)

Simulation

Č-only: 17.9/√E (%)

(unweighted) average: $10.3/\sqrt{E+0.3}$ (%)

Test beam tuned simulation

Radial shower profile

50 GeV electrons

ΙΟΟ GeV π⁰

- Use test beam data to tune simulation
- ✦ Use simulation to correct for lateral leakage
- 81 and 91 GeV jet separation

Particle ID

IDEA implementation

- ✦ Calorimeter outside thin coil
- Pre-shower in front
 - Improve π^0 ID
 - ✦ Improve acceptance determination

IDEA implementation

- Full coverage
- Wedge geometry

Optimization studies on the calorimeter mechanics ongoing

Solenoid parameters

- Coil center radius 2.25 m
- Coil length 5.0 m
- ✦ Goal field 2 Tesla

1.995e+000 : >2.100e+000 1.890e+000 : 1.995e+000

Im Yoke is oversized

- Much nicer!
- Almost no need for yoke

Similar field quality than full iron

SiPM Readout

- Dual layer SiPM readout
 - Avoids optical cross-talk
- Saturation studied with dedicated test beams
 - ◆ 25 µm pixels OK for Cherenkov
 - Need 10 μm for Scintillator
- Analogical signal grouping to reduce number of channels
 - Critical to be in linear regime (not possible to apply correction on summed channels)
 - Achievable with
 - Use of yellow filter to reduce scintillation light
 - Reduce sensor cell dimensions (from 25 μm to 5 μm)

M. Antonello et al, NIM A (2018) https://doi.org/10.1016/j.nima.2018.10.169

In a full scale module, the number of *readout channels* will be of the order of **10**⁸.

The possibility to sum up the analog output is under study:

Number of SiPM that can be grouped guarantying the *Multi-Photon spectrum*.

SiPM *dynamic range*: sensors have to operate in a *linear regime*.

Measurement conditions (containment correction not applied):

* Values already corrected for the sensor non linearity response

 $V_{op} = 5.5 V_{ov} (57.5 V)$ and $PDE_C \sim 25\% (440 nm) - PDE_S \sim 20\% (556 nm)$

Temperature stability correction:

 $\Delta T < 0.5^{\circ}C$ during a single run (negligible) || $\Delta T \sim 1^{\circ}C$ during the full scan (considered)

Dual readout calorimetry is a well understood technology

- Excellent EM and HAD resolution in a single package
- Intrinsic high transverse granularity
- Particle ID on isolated tracks
- Performance on prototype shown to be adequate
- Still a (quite) long list of optimization is needed to get the detector design ready for the experiment
 - Mechanical structure
 - Electronics readout

Working principle

G. Gaudio – 11th FCC-ee workshop: Theory and Experiments – Jan. 8–11th, 2019

Istituto Nazionale di Fisica Nucleare

Two options:

- ✦ Large bore (R=3.7 m) calorimeter inside
- ✦ Smaller bore (R=2.2 m) calorimeter outside
 - Preferred: simpler/ Extreme EM resolution not needed
 - Thick calorimeter
 - Thin (30 cm): total = 0.74 X_0 (0.16 λ) at θ = 90°

Property	Value
Magnetic field in center [T]	2
Free bore diameter [m]	4
Stored energy [MJ]	170
Cold mass [t]	8
Cold mass inner radius [m]	2.2
Cold mass thickness [m]	0.03
Cold mass length [m]	6

Invisible Energy correlations

G. Gaudio – 11th FCC-ee workshop: Theory and Experiments – Jan. 8–11th, 2019

In the scintillation fibres the emitted light can be reabsorbed. Light attenuation causes the signal dependence on where the fibres are hit by the shower particles and it is a phenomenon that is mainly important for hadron showers.

Response uniformity improved of **30%** Attenuation = **77 times** C: 69 Cpe/GeV $\rightarrow \epsilon_{Combined} \sim 16.0 \%$ S: 93 Spe/GeV $\rightarrow \epsilon_{Combined} \sim 14.8 \%$ $\epsilon_{C+S} = 10.9 \%$

Attenuation effect

20

18

Error from sampling fluctuations:

$$\epsilon_{Sampling} \sim 10.5 \%$$

Relative error of signal:

$$\epsilon_{N_{FC/GeV}} = \frac{1}{\sqrt{N_{FC/GeV}}}$$

Combined error for each channel:

$$\epsilon_{Combined} = \sqrt{\epsilon_{Sampling}^2 + \epsilon_{N_{FC/GeV}}^2}$$

Stochastic term in e.m. resolution:

$$\epsilon_{C+S} \sim \frac{\sqrt{\epsilon_{Combined}^2(S) + \epsilon_{Combined}^2(C)}}{2}$$

C: 69 Cpe/GeV $\rightarrow \epsilon_{Combined} \sim 16.0\%$ S: 93 Spe/GeV $\rightarrow \epsilon_{Combined} \sim 14.8\%$ $\epsilon_{C+S} = 10.9\%$

Yellow filter

Lab measurement of transmittance spectra (with spectrophotometer).

Good agreement between measurement and Datasheet.

Kodak Wratten 21 gelatine filter.

100

Data

CepC, FCC, ILC, CLIC luminosity comparison

e⁺e⁻ Collider Luminosities

- Wide range of running conditions at CepC
 - ✤ Z pole (90 GeV):
 - ~ 10 ns between beam crossing
 - ✦ High luminosity O(10³⁵)
 - ✦ ZH (250 GeV):
 - ~ I μ s between beam crossing
 - ✦ Moderate luminosity O(10³⁴)

Simulation results: proj. (R = 2.0 m)

Longitudinal field projection (@, R = 2.0 m

Istituto Nazionale di Fisica Nucleare

Radial field variation:

Iron calorimeter

G. Gaudio – 11th FCC-ee workshop: Theory and Experiments – Jan. 8–11th, 2019

interaction vertex till after yoke

G. Gaudio - 11th FCC-ee workshop: Theory and Experiments - Jan. 8-11th, 2019

G. Gaudio - 11th FCC-ee workshop: Theory and Experiments - Jan. 8-11th, 2019

- Physics benchmarks with full simulation
- Mechanics:
 - Metal matrix technology
 - ✦ Fast module assembly
 - Calorimeter support

Electronics

- SiPM readout optimization (pixel size and x-talk)
- Define readout chain
 - ASIC selection or development
 - Signal processing on detector
 - Readout and back-end design
- Explore timing for longitudinal information