

(Heavy) Flavour Physics requirements on the detector design

Stéphane Monteil,

University of Clermont, LPC / IN2P3-CNRS.

Outline

- Vertexing (from FCNC b-hadron EW penguins)
- 2. Momentum resolution (from cLFV Z decays)
- 3. Charged particle identification $p / K / \pi$ (from *CP*-violating weak phase measurements)
- 4. Calorimetry (from feelings)

Disclaimer: gathering ideas given in presentations here:

https://indico.cern.ch/event/438866/contributions/1084975/attachments/1258656/1859177/Monteil_FCC.pdf https://indico.cern.ch/event/687191/

1) Vertexing — topological reconstruction

- One of the most demanding requirement for vertex detectors comes from the missing momentum reconstruction inferred from the decay flight distances.
- Example: $X \to Y(Y \to [a]b) Z$ with a not reconstructed.

- Three momentum components to be searched for:
 - The measurement of *X* momentum direction fixes 2 d.o.f.
 - An additional constraint closes the system: m_Y or a tertiary vertex.
 - Usually, quadratic form of the constraints: solution up to an ambiguity.

1) Vertexing. Physics motivations in one slide.

• There are consistent and persistent departures in measurements of the FCNC decays $b \rightarrow s \ell^+\ell^-$ w.r.t. the SM predictions.

- In particular, Lepton Flavour Universality is challenged. Should anomalies be confirmed, modes with tau decays can prove to be invaluable to point towards the right model.
- $B^0 \rightarrow K^{*0} \tau^+\tau^-$ unique at FCC-ee. It has received a special attention in the FCC-ee context.

1) Vertexing. Reconstruction.

Backgrounds:

(pink)
$$\bar{B}^0 \to D_s^+ \bar{K}^{*0} \tau^- \bar{\nu}_{\tau}$$
 (red) $\bar{B}_s \to D_s^- D_s^+ K^{*0}$ (signal in green).

 Conditions: baseline luminosity, SM calculations of signal and background BF, vertexing and tracking performance as ILD detector. Momentum → 10 MeV, Primary vertex → 3 um, SV → 7 um, TV → 5 um

Few comments:

- At baseline luminosity, several 10³ events of reconstructed signal. Angular éanalysis possible.
- With an ALEPH-like vertex detector performance, the signal peak can't be resolved.
- Another interesting and more challenging mode is $B_s \to \tau^+\tau^-$.

1) Vertexing. Performance of reconstruction (BF)

1) Vertexing. Outlook.

- The Physics perspectives are the sensitivity on the measurements of the branching fraction (differential in q^2) and the angular analysis of the decay.
- As soon as we go to angular observables, the angular resolution will provide additional constraints.
- This has been explored phenomenologically in arXiv:1705.11106.
- One needs to go to full simulation to provide sound figures on the BF and angular observable precisions.

2) Momentum resolution from cLFV Z decays

 Lepton Flavour-Violating Z decays in the SM with lepton mixing are typically

$$\mathcal{B}(Z \to e^{\pm} \mu^{\mp}) \sim \mathcal{B}(Z \to e^{\pm} \tau^{\mp}) \sim 10^{-54} \text{ and } \mathcal{B}(Z \to \mu^{\pm} \tau^{\mp}) \sim 4.10^{-60}$$

- Any observation of such a decay would be an indisputable evidence for New Physics.
- Current limits at the level of ~10-6 (from LEP and recently Atlas, e.g. [DELPHI, Z. Phys. C73 (1997) 243] [ATLAS, CERN-PH-EP-2014-195 (2014)])
- The FCC-ee high luminosity Z factory would allow to gain up to six orders of magnitude ... Complementary to the direct search for steriles.
- Explored with FCC-ee in mind in [De Romeri et al. JHEP 1504 (2015) 051]. It happens that the final states with taus are the most appealing.

2) Momentum resolution from cLFV Z decays

- There are actually three processes competing in the ball park we can address with a final state with a tau and a beam energy light lepton
 - The lepton Flavour-Violating Z decays
 - The SM $Z \rightarrow \tau^+\tau^-$
 - The SM $Z \rightarrow l+l$ $(l \rightarrow W^*v \text{ and } W^* \rightarrow \tau v)$
- Following Mogens Dam's study reported <u>here</u>:

The SM process $Z \rightarrow \tau^+\tau^-$ provides a limit on LFV process which goes linearly with the momentum resolution. Which is asymptotically limited in turn by the beam energy spread.

The lattermost process in the list [Durieux et al. arXiv:1512.03071] is interesting per se (subjected to NP enhancements) and can be distinguished from the two others by its kinematical properties: a partial reconstruction technique would make the job here again.

2) Momentum resolution — Summary and one more

- cLFV Z decays studies requires to reach a momentum resolution at the level of the beam energy spread.
- Additional remarks on tracking:
 - *CP* violation program will be rich at FCC-*ee*. We can do with a significantly larger statistics the Belle II program (B^0 and B^+) plus the other weakly-decaying species (B_s , B_c and the *b*-baryons Λ_b , $\Xi_b \dots$)
 - In many occurrences, one needs to select CP eigenstates with long-lived particles in the detector: K_S and Λ .
 - V⁰ tracking capabilities is in order.

Benchmark mode: *CP* violation studies with $B_s \rightarrow D_s K$

• for Physics: measure simultaneously the phases γ (decay) and ϕ_s (mixing, B_s). No theoretical uncertainty plaguing the interpretation.

for detectors: understand the needs of p / K / π separation. This mode is interesting since there is a competition of up-feeding and down-feeding contribution through for instance mis-identification:
B_s → D_sπ and Λ_b → D_s p. At some point, it will be useful as well to determine the quark flavour tagging effciency (e.g. same side kaon).

CP violation studies: $B_s \rightarrow D_s K$:

LHCb-PAPER-2014-064 ArXiv:1412.7654

Note: this plot is obtained after PID cuts are applied ...

- The discrimination acts on the bachelor particle h in $X_b \to D_s h$, h being $p / K / \pi$.
- Momentum of the K bachelor particle from 10 k $B_s \rightarrow D_s K$ simulated events (Pythia+ EvtGen).

 Since it is a Q2-body decay, one finds a hard spectrum of the bachelor particle (generally not representative of b-hadron decays).

- The discrimination acts on the bachelor particle h in $X_b \to D_s h$, h being p / K/π . 10 k of $B_s \to D_s \pi$ were generated to
- reconstruct $B_s \to D_s \pi$ as $B_s \to D_s K$. Correlate the invariant mass with the Bachelor particle momentum.

The harder is the momentum, the higher is the cross-feeding probability.

- Reconstruct 10k events of $B_s \to D_s K$ and $B_s \to D_s \pi$ both under the hypothesis of D_sK final state.
- The momentum resolution was emulated following ILD performance:

$$\frac{\sigma p_{\perp}}{p_{\perp}^2} = 2 \times 10^{-5} + \frac{10^{-3}}{p_{\perp} \sin \theta}.$$

2014 J. Phys.: Conf. Ser. 513 022011

- Fantastic separation of the two components but that is not the end of the story.
- The other backgrounds from partially reconstructed events must be accounted for.

The momentum resolution was emulated following ILD performance, but now with the natural proportions of all the possible backgrounds:

© Vava Gligorov.

- Most toxic backgrounds are partially reconstructed B_s2D*_sPi
- Hadron PID required to clear up the figure.

A further comment of the necessity of hadronic PID beyond the Flavour Physics program.

• The measurement of the forward-backward asymmetry of the b quark in Z decays is primarily meant for Ab determination, since muons must drive the determination of $\sin^2 \theta_W$.

 Explore exclusive b-hadron decays reconstruction to benefit of the Z pole statistics.

A further comment of the necessity of hadronic PID beyond the Flavour Physics program.

- Limitations of LEP-like measurements of A_{FB}(b):
 - mixing dilution with lepton tags (and jet charge).
 - purity of the sample.
 - QCD corrections (gluon radiations).
- Exclusive reconstruction of hadronic B^+ or Λ_b decays, e.g.
 - $B^- \to D^0 \pi$, $D^0 \pi \pi^+ \pi^- [10^{-2}]$ followed by $D^0 \to K^- \pi^+$, $K^- \pi^+ \pi^+ \pi^+$, $K_S^0 \pi^+ \pi^- [15.10^{-2}]$
 - $\Lambda_b \rightarrow \Lambda_c \pi^+$, $\Lambda_c \pi^+ \pi^- \pi^- [10^{-2}]$ followed by $\Lambda_c \rightarrow p K^- \pi^+ [7. 10^{-2}]$
- Can expect several 109 of them.

A further comment of the necessity of hadronic PID beyond the Flavour Physics program.

- Limitations of LEP-like measurements of A_{FB}(b):
 - mixing dilution with lepton tags.
 - purity of the sample.
 - QCD corrections (gluon radiations).
- Hadron PID required for at least correct mass assignment of the hypothesis and get rid of cross-feeds.
- The two former limitations are overcome.
- On top of that, get the direction of the *b*-hadron, in addition to the thrust of the event (to be studied but should reduce the QCD corrections by selecting clean topologies).
- Many other use cases from exclusive reconstructions.

4) Calorimetry — generalities

The Flavour (tau and *b*-hadron Physics) constraints are mostly inline with the standard needs of the (Particle) Energy Flow requirements:

- Tracking π^0 in jets or tau decays.
- Identify neutral hadrons in jets.
- Identify electrons in jets.
- For rare LFV processes, separate muons and electrons.
- Identify missing energy position in jets (e.g. B2Kvv)

In turn, the requirements follow:

- High transverse granularity.
- Fine longitudinal segmentation.
- The farer the better.
- The lighter (in front) the better.

5) Conclusions (1)

1. Vertexing from FCNC b-hadron EW penguins

- Topological reconstruction (w/ missing neutrinos) is very demanding for the vertexing: EW penguin transition $B^0 \to K^{*0} \tau^+\tau^-$ (unique to FCC-*ee*) used as a benchmark.
- ILD performance makes the job for this one. But the more resolved the better.

2. Momentum resolution from LFV Z decays and CP studies

- Aiming at hitting the beam energy spread @ 45 GeV.
- V⁰ tracking is mandatory for CP violation studies

5) Conclusions (2)

3. Charged particle identification $p / K / \pi$

- It is mandatory at least for the Flavour Physics program. More stringent requirements in the momentum range than Belle II.
- Hadronic PID beneficial beyond the Flavour case.
- We'll hear next of several appealing approaches.

4. Calorimetry

- High transverse granularity
- Longitudinal granularity is in order (calorimeter tracking).