# Drift Chambers vs. Time Projection Chambers



F. Grancagnolo



11<sup>th</sup> FCC-ee workshop: Theory and Experiments CERN, 8-11 January 2019





|         |         | Frack                | ers a    | at e <sup>+</sup> | e co            | llide                                 | ers        |              |  |
|---------|---------|----------------------|----------|-------------------|-----------------|---------------------------------------|------------|--------------|--|
|         | past    |                      | rec      | cent pa           | ast             |                                       | future     |              |  |
| SPEAR   | MARK2   | Drift Chamber        |          | ALEPH             | TPC             |                                       |            | TPC          |  |
|         | MARK3   | Drift Chamber        |          |                   |                 | c  -                                  |            |              |  |
| DORIS   | PLUTO   | MWPC                 |          | DELPHI            | TPC             | ILC<br>CLIC<br>FCC-ee<br>CEPC<br>KEKB | SiD        | Si           |  |
|         | ARGUS   | Drift Chamber        | LEP      | 13                | Si + TEC        |                                       |            |              |  |
| CERS    | CLEO1,2 | Drift Chamber        |          |                   |                 | CLIC                                  | CLIC       | Si           |  |
| PETRA   | CELLO   | MWPC + Drift Chamber |          | OPAL              | Drift Chamber   |                                       |            |              |  |
|         | JADE    | Drift Chamber        | SLC      | MARKO             | Drift Chambor   |                                       | CLD        | Si           |  |
|         | PLUTO   | MWPC                 |          |                   |                 | FCC-ee                                |            |              |  |
|         | MARK-J  | TEC + Drift Chambers |          | SLD               | Drift Chamber   |                                       | IDEA       | Drift Chamb  |  |
|         | TASSO   | MWPC + Drift Chamber |          |                   | Defft Oberecher |                                       |            |              |  |
|         | MARK2   | Drift Chamber        | DAPHNE   | KLOE              | Drift Chamber   |                                       | Baseline   | TPC          |  |
|         | PEP-4   | TPC                  | VEPP2000 | CMD-2             | Drift Chamber   | CEPC                                  |            | Drift Chambe |  |
| PEP     | MAC     | Drift Chamber        |          |                   |                 |                                       | IDEA       |              |  |
|         | HRS     | Drift Chamber        | PEP2     | BaBar             | Drift Chamber   |                                       | D - II - O |              |  |
|         | DELCO   | MWPC + Drift Chamber | KEKB     | Relle             | Drift Chamber   | KEKB                                  | Belle2     | Drift Chame  |  |
| TRISTAN | AMY     | Drift Chamber        | KERD     |                   |                 | OOTE                                  |            | Drift Chamba |  |
|         | VENUS   | Drift Chamber        | CESR     | CLEO3             | Drift Chamber   |                                       | DINF       |              |  |
|         | TOPAZ   | TPC                  |          |                   | Drift Chamber   | STCF                                  | Hefei      | Drift Chamb  |  |
| BEPC    | BES1,2  | Drift Chamber        | BEPC2    | BES3              | Drift Chamber   |                                       |            |              |  |

# Guidelines for tracker choice

#### **Fulfillment of physics requirements**

- Solid angle coverage
- Detection efficiency (double track separation, vees and kinks, rate capability, aging, front-end electronics response)
- Ultimate resolutions on angles, momentum, extrapolation to the vertex (including multiple scattering contributions) and particle identification

### System complexity

- Total number of active channels
- Stability of relative and global alignment
- Stability of channel to channel calibrations

### System Interaction

- Machine Detector Interface
- Vertex detector (track extrapolation) and outer electromagnetic calorimeter (tracker transparency)

### Cost

\*

•

\*



5



# Solid state tracker drawbacks

### Multiple scattering

Contribution to momentum resolution due to multiple scattering dominates up to larger momenta than in a gaseous tracker

#### Redundancy

Only a limited number N of layers can be implemented, hindering the momentum resolution, proportional to  $\sigma/\sqrt{N}$ , despite the excellent spatial resolution  $\sigma$  (is it really needed?) (**25 µm**/ $\sqrt{6}$  = **100 µm**/ $\sqrt{100}$ )

Inefficiencies for "kinks" and "vees"

Lack of redundancy against hit inefficiencies and background hits

#### particle identification

No dE/dx possible, maybe TOF if order of 10 ps resolution can be granted over many m<sup>2</sup>

#### system complexity

Order of  $10^8 - 10^9$  channels for a limited number of space points on a track with a lever arm compatible with the momenta to be measured

Stability of relative and absolute alignment



F. Grancagnolo - DCH vs TPC

7



### TPC of the past at colliders

| Table 3. Characteristics and performance of some TPCs. |                        |                            |                        |                    |                     |                    |                     |
|--------------------------------------------------------|------------------------|----------------------------|------------------------|--------------------|---------------------|--------------------|---------------------|
| Parameter/Experiment                                   | PEP4                   | TRIUMF                     | TOPAZ                  | AlEPH              | DELPHI              | STAR               | ALICE <sup>a</sup>  |
| Operation                                              | 1982/1984              | 1982/1983                  | 1987                   | 1989               | 1989                | 2000               | 2009                |
| Inner/Outer radius (m)                                 | 0.2/1.0                | $\sim 0.15/0.50$           | 0.38/1.1               | 0.35/1.8           | 0.35/1.4            | 0.5/2.0            | 0.85/2.5            |
| Max. driftlength $(L/2)$ (m)                           | 1                      | 0.34                       | 1.1                    | 2.2                | 1.34                | 2.1                | 2.5                 |
| Magnetic field (T)                                     | 0.4/1.325              | 0.9                        | 1                      | 1.5                | 1.23                | 0.25/0.5           | 0.5                 |
| Gas :                                                  | Ar/CH <sub>4</sub>     | Ar/CH <sub>4</sub>         | Ar/CH <sub>4</sub>     | Ar/CH <sub>4</sub> | Ar/CH <sub>4</sub>  | Ar/CH <sub>4</sub> | Ne $/CO_2/N_2$      |
| Mixture                                                | 80/20                  | 80/20                      | 90/10                  | 91/9               | 80/20               | 90/10              | 90/10/5             |
| Pressure (atm)                                         | 8.5                    | 1                          | 3.5                    | 1                  | 1                   | 1                  | 1                   |
| Drift field (kV cm <sup>-1</sup> atm <sup>-1</sup> )   | 0.088                  | 0.25                       | 0.1                    | 0.11               | 0.15                | 0.14               | 0.4                 |
| Electron drift velocity (cm $\mu$ s <sup>-1</sup> )    | 5                      | 7                          | 5.3                    | 5                  | 6.69                | 5.45               | 2.7                 |
| $p\tau$ (see section 2.2.1.3)                          | 0.2/0.7                | 2                          | 1.5                    | 7                  | 5                   | 1.15/2.3           | <1                  |
| Pads: Size $w \times L (mm \times mm)$                 | $7.5 \times 7.5$       | $(5.3-6.4) \times 19$      | $(9-11) \times 12$     | $6.2 \times 30$    | $\sim$ 7 $\times$ 7 | $2.85 \times 11.5$ | $4 \times 7.5$      |
|                                                        |                        |                            |                        |                    |                     | $6.2 \times 19.5$  | $6 \times 10/15$    |
| Max. no. 3D points                                     | 15—straight            | 12                         | 10—linear              | 9 + 12—circular    | 16—circular         | 13 + 32—straight   | 63 + 64 + 32        |
| E/dx: Max. no. samples/track                           | 183                    | 12                         | 175                    | 148 + 196          | 192                 | 13 + 32            | 63 + 64 + 32        |
| Sample size (mm atm); $w$ or $p$                       | $4 \times 8.5$ ; wires | 6.35; wires                | $4 \times 3.5$ ; wires | 4; wires           | 4; wires            | 11.5 + 19.5; pads  | 7.5 + 10 + 15; pads |
| Bas amplification                                      | 1000                   | 50 000                     |                        | 3000-5000          | 5000                | 3000/1100          | 20 000              |
| Jap a–p; a–c; c–gate <sup>b</sup>                      | 4; 4; 8                | 6                          | 4; 4; 8                | 4; 4; 6            | 4; 4; 6             | 2; 2; 6/4; 4 ; 6   | 2; 2; 3/3; 3; 3     |
| Pitch a–a; cathode; gate                               | 4; 1; 1                |                            | 4; 1; 1                | 4; 1; 2            | 4; 1; 1             | 4; 1; 1/ 4; 1; 1   | 2.5; 2.5; 1.5       |
| ulse sampling (MHz/no. samples)                        | 10/455, CCD            | only 1 digitiz., ADC       | 10/ 455, CCD           | 11/ 512, FADC      | 14/300, FADC        | 9.6/400            | 5-10/500-1000, ADC  |
| Gating <sup>c</sup>                                    | ≥1984 o.on tr.         | ≥1983 o.on tr.             | o. on tr.              | synchr. cl.wo.tr   | static              | o.on tr.           | o.on tr.            |
| ads, total number                                      | 15 000                 | 7800                       | 8200                   | 41 000             | 20 000              | 137 000            | 560 000             |
| Performance                                            |                        |                            |                        |                    |                     |                    |                     |
| $\Delta x_{\rm T}$ ( $\mu$ m)-best/typ.                | 130-200                | 200/                       | 185/230                | 170/200-450        | 180/190-280         | 300-600            | spec:800-1100       |
| $\Delta x_{\rm L} \ (\mu {\rm m})$ -best/typ.          | 160-260                | 3000                       | 335/900                | 500-1700           | 900                 | 500-1200           | spec:1100-1250      |
| wo-track separation (mm), $T/L$                        | 20                     |                            | 25                     | 15                 | 15                  | 8 - 13/30          |                     |
| $p/p^2$ (GeV/c) <sup>-1</sup> : TPC alone; high p      | 0.0065                 |                            | 0.015                  | 0.0012             | 0.005               | 0.006              | spec:0.005          |
| E/dx (%) Single tracks/ in jets                        | 2.7/4.0                |                            | 4.4 /                  | 4.4 /              | 5.7/7.4             | 7.4/7.6            | spec:4.9/6.8        |
| omments                                                |                        | a in single PCs            | chevron pads           | circular pad rows  | circular pad rows   | No field wires     | No field wires      |
|                                                        |                        | strong $E \times B$ effect |                        |                    |                     | >3000 tracks       | ≤20 000 tracks      |

<sup>a</sup> Expected performance.

<sup>b</sup> a = anode, p = pads, c = cathode grid.

<sup>c</sup> o. on tr.: gate opens on trigger; cl.wo.tr. : opens before collision and closes without trigger; static : closed for ions only (see text).



F. Grancagnolo - DCH vs TPC

9

Jan. 9, 2019

Hilke

g. Phys. 72 (2010) 116201







# Cost of performance: complexity

### Implications of a long drift distance (2.5 m)

- Orift field (400 V/cm) distortions at 10<sup>-4</sup> level contribute with 250 μm to spatial resolution
- ★ Temperature stability < 0.1°K, corresponding to ≈1mm for vdrift = 2.65 cm/µs, necessitates a complex cooling systems (HV distribution and FEE)</p>
- Δv<sub>drift</sub>/v<sub>drift</sub> = -6.4×Δ(CO<sub>2</sub>)/(CO<sub>2</sub>) = -1.0×Δ(N<sub>2</sub>)/(N<sub>2</sub>) < 10<sup>-4</sup> implies Δ(CO<sub>2</sub>)/(CO<sub>2</sub>) < 0.01%!</li>
   gas chromatograph + thermal conductivity detector + high precision drift velocity monitoring necessary
- 5 ppm of O<sub>2</sub> attach 25% of electrons after 2.5 m drift. Gas tightness and fresh gas flow rate (high cost of Ne) are critical

### **Calibrations: lasers and radioactive sources**

Two 150 mJ/5 ns pulse Nd:YAG lasers (266 nm) are split in 336 synchronous beams by means of remotely controlled systems of mirrors, beam splitters and bending prisms (Δx, Δy, Δz ≤ 800-1000 μm; Δϑ, Δφ ≤ 0.4-0.5 mrad), monitored by a calibrated energy meter and imaged with a CCD. Moreover, laser beams reflected by metallic surfaces (HV strips) define maximum drift time.
 Radioactive Kr gas is used for pad-by-pad calibration by equalizing gain at 1.5%



F. Grancagnolo - DCH vs TPC









### ... from ALICE to CEPC-TPC

### Field Cage: complexity of operability mechanical structure (> 14 ton) cooling issues Laser alignment Pad by pad calibration stability (aggravated by the larger number of pads) Gas issues: drift field distortions must be kept within a factor 4 below 10<sup>-4</sup> because of a factor four better (claimed) spatial resolution temperature stability much better than 0.1°K drift velocity monitoring to better than 10<sup>-4</sup> oxygen content below 5 ppm concentration Low discharge and sparking possibilities typical of MPGD B-field: what if B = 3T turns out to be incompatible and needs to be reduced to 2T? What happens to spatial resolution?



F. Grancagnolo - DCH vs TPC

15

### Drift Chambers of the past at colliders

| Detector                               | KLOE            | CLEO III                | BaBar           | BES III                      | Belle        | Belle II                   |  |  |
|----------------------------------------|-----------------|-------------------------|-----------------|------------------------------|--------------|----------------------------|--|--|
| B,T                                    | 0.6             | 1.5                     | 1.5             | 1.0                          | 1.5          | 1.5                        |  |  |
| $R_{in}/R_{out}$ , mm                  | 250/2000        | 125/820                 | 236/809         | 59/810                       | 77/880       | 160/1130                   |  |  |
| L <sub>in</sub> /L <sub>out</sub> , mm | 2800/3320       | 1245(?)/2490            | 2764/2764       | 774/2582                     | 747/2204     | 900/2417                   |  |  |
|                                        |                 | Construction inner tube |                 |                              |              |                            |  |  |
| Material                               | CF              | Composite               | Be(near IP)     | CF                           | CFPR         | CFPR (AI)                  |  |  |
| h, mm                                  | 1.1             | 2.02                    | 1               | 1                            | 0.4          | 0.52 (0.1)                 |  |  |
| X/X0,%                                 | 0.06            | 0.12                    | 0.28            | 0.45                         | 0.17         | 0.33                       |  |  |
| Endplate                               | Spherical       | Conical                 | Flat            | Conical                      | Spherical    | Conical+                   |  |  |
| N <sub>cells</sub>                     | 12582           | 9796                    | 7104            | 6796                         | 8400         | 14336                      |  |  |
| Shape                                  | Square          | Square                  | Hexagon         | Square                       | Square       | Square                     |  |  |
| SW $d, \mu m$                          | W(Au) 25        | W(Au) 20                | W(Au) 20        | W(Au) 25                     | W(Au) 30     | W(Au) 30                   |  |  |
| <b>FW</b> <i>d</i> , μ <i>m</i>        | Al(Au) 80       | Al(Au) 110              | Al(Au) 120      | Al(Au) 110                   | Al 126       | Al 126                     |  |  |
| Size, mm $	imes$ mm                    | 2 × ⅔π, 3 × π   | 14 	imes 14             | 18 × 12         | 12 $	imes$ 12, 16 $	imes$ 16 | 17 × 16      | 7 $	imes$ 7, 10 $	imes$ 10 |  |  |
| $N_{layers}(\overline{h}, mm)$         | 12 + 46         | 47(14.8)                | 40(14.3)        | 43(17.5)                     | 50(16.1)     | 56(17.3)                   |  |  |
| Gas mix                                | $He/iC_4H_{10}$ | $He/C_3H_8$             | $He/iC_4H_{10}$ | $He/C_3H_8$                  | $He/C_2H_6$  | $He/C_2H_6$                |  |  |
|                                        | 90/10           | 60/40                   | 80/20           | 60/40                        | 50/50        | 50/50                      |  |  |
| Voltage,V                              | 1800/2000       | 1900                    | 1930            | 2200                         | 2300         | 2300                       |  |  |
| T/D, ns/mm                             | ~ 1000/15       | $\sim 300/7$            | $\sim 500/9$    | $\sim$ 350/8                 | $\sim 350/8$ | $\sim 350/8$               |  |  |
| σ, μm                                  | 150             | 110                     | 120             | 120                          | 130          | $\sim$ 130                 |  |  |
| σ <u>d</u> ,%                          | 4.0             | 5.7                     | 7.5             | 6.0                          | 6.9          | 6.4                        |  |  |
| $\frac{\sigma_p}{p}$ ,% (1 GeV)        | 0.25            | 0.32                    | 0.48            | 0.5                          | 0.35         | 0.35                       |  |  |
| F. Grancagnolo - DCH vs TPC 16         |                 |                         |                 |                              |              |                            |  |  |

Todishev - Basok Future tau-charm, Orsay Dec. 2018



# Cost of performance: t-to-d relation



"almost" square cell require t-to-d angle dependent Layer at outer bound of cell aims at opposite sign stereo angle w.r.t. sense wire layer and layer at inner bound implying t-to-d relations are functions of the track angle and the cell periodicity in z.













perfectly "square" cells: w<sub>i</sub> = h<sub>i</sub> at any z:  $w_i(z=L/2) = h_i(z=L/2) = 1.035 w_i(z=0) = 1.035 h_i(z=0)$ no β angle dependence no  $\Phi$  angle dependence in principle, one single t-to-d scalable for all layers

#### **Configuration used for MEG2 chamber**

F. Grancagnolo - DCH vs TPC 21

Configuration requires more field w. per sense w. (5:1, as opposed to 3:1 in KLOE) allowing for thinner field wires, therefore less m.s. contribution and less mechanical tension on end plates.

**Requires automatized feed-through-less** wiring procedure, already used for the **MEG2** chamber

## ... from KLOE to IDEA

Limited number of sensitive elements (< 60,000 sense wires) sampled at high rate ( 2 GSa/s) over the maximum drift time (40 ns) allows for:

- **cluster timing** for improving spatial resolution at small impact parameters
- cluster counting for excellent particle identification (no need for fancy pulse height calibration)
- fast hit filtering and efficient compression of raw data
- bunch crossing identification within a few ns

Occupancy issues have been addressed with simulations both at Z and top energies within the FCC-ee framework confirming a relatively safe environment





F. Grancagnolo - DCH vs TPC

22

### ... from KLOE to IDEA

### **Sense wires electrostatic stability**



sense wire capacitance per unit length **C = 8 pF/m** 

0.14 N for a 20  $\mu$ m W sense wire correspond to 450 MPa, very close to the W yield strength (elastic limit) = 750 MPa.

 $T > \frac{C^2 V_0^2 L^2}{4\pi\varepsilon w^2}$ 

IDEA sense wires stability condition T > 0.14 N Analogously for the Al field wires, one gets 175 MPa, as opposed to the Al yield strength of 275 MPa.

Both present a mere **1.5 safety factor** against failure! Is it safe enough? Most chamber have been operated at an even smaller safety factor.



F. Grancagnolo - DCH vs TPC

23

