## Laporta algorithm for multi-loop vs multi-scale problems

(with Philipp Maierhöfer and Peter Uwer)
11th FCC-ee workshop: Theory and Experiments

Johann Usovitsch




Trinity College Dublin
Coláiste na Tríonóide, Baile Âtha Cliath
The University of Dublin
09. January 2019

## Outline

(1) Introduction
(2) Implementation-Kira
(3) Examples and Challenges
(4) New feature
(5) Summary and Outlook

## Integration-by-parts identities applications

- Integration-by-parts (IBP) [Chetyrkin, Tkachov, 1881] ${ }^{\text {and }}$ Lorentz invariance [Gehmann,Remiddi,2000] identities for scalar Feynman integrals are very important in quantum field theoretical computations (multi-loop computations)
- Reduce the number of Feynman integrals to compute, which appear in scattering amplitude computations
- Compute the integrals analytically or numerically with the method of differential equations [Kotikov,1991;Remiddi,1997;Henn,2013:Argeri et al.,2013;Lee, 2015;Meyer,2016] or difference equations[Laporta,2000;Lee,201] (require basis change and IBP reductions)
- Use the method of sector decomposition [Heeinich,2008] (pySecDec [Borowka et al.,2018] and Fiesta4 [Smirnov,2016]) or use the linear reducibility of the integrals (Hyperlnt [Panzer,2014) to compute the Feynman integrals analytically or numerically (require basis change and IBP reductions).


## Scalar Integrals



$$
I\left(a_{1}, \ldots, a_{5}\right)=\int \frac{d^{d} k_{1} d^{d} k_{2}}{\left[k_{1}^{2}\right]^{a_{1}}\left[\left(p_{1}+k_{1}\right)^{2}\right]^{a_{2}}\left[k_{2}^{2}\right]^{a_{3}}\left[\left(p_{1}+k_{2}\right)^{2}\right]^{a_{4}}\left[\left(k_{2}-k_{1}\right)^{2}\right]^{a_{5}}}
$$

- Integral depends explicitly on the exponents $a_{f}$
- Loop momenta: $k_{1}, k_{2}, L=2$
- Number of the propagators: $N=5$


## IBP Identities

$$
I\left(a_{1}, \ldots, a_{5}\right)=\int \frac{d^{d} k_{1} d^{d} k_{2}}{\left[k_{1}^{2}\right]^{a_{1}}\left[\left(p_{1}+k_{1}\right)^{2}\right]^{a_{2}}\left[k_{2}{ }^{2}\right]^{a_{3}}\left[\left(p_{1}+k_{2}\right)^{2}\right]^{a_{4}}\left[\left(k_{2}-k_{1}\right)^{2}\right]^{a_{5}}}
$$

Integration-by-parts (IBP) identities:

$$
\begin{array}{rlr} 
& \int d^{d} \boldsymbol{k}_{\mathbf{1}} \ldots d^{d} \boldsymbol{k}_{L} \frac{\partial}{\partial\left(\boldsymbol{k}_{\boldsymbol{i}}\right)_{\mu}}\left(\left(q_{j}\right)_{\mu} \frac{1}{\left[P_{1}\right]^{a_{1}} \ldots\left[P_{N}\right]^{a_{N}}}\right) & =0 \\
& c_{1}\left(\left\{a_{f}\right\}\right) I\left(a_{1}, \ldots, a_{N}-\mathbf{1}\right)+\cdots+c_{m}\left(\left\{a_{f}\right\}\right) I\left(a_{1}+\mathbf{1}, \ldots, a_{N}\right) & =0 \\
q_{j}= & p_{1}, \ldots, p_{E}, k_{1}, \ldots, k_{L} &
\end{array}
$$

Express all integrals with the same set of propagators but with different exponents $a_{f}$ as a linear combination of some basis integrals (master integrals).

- Gives relations between the scalar integrals with different exponents $a_{f}$
- Number of $L(E+L)$ IBP equations, $i=1, \ldots, L$ and $j=1, \ldots, E+L$
- $a_{f}=$ symbols: Look for recursion relations, LiteRed [Lee,2012]
- $a_{f}=$ integers: Sample a system of equations, Laporta algorithm [Laporta,2000]


## Laporta Algorithm [Iaporata200]

Scalar integrals $I\left(a_{1}, \ldots, a_{5}\right)$ with integer values $a_{f}$

## Sample system of IBP equations, Reduze [Studerus,Manteuffel,201] language

- $r=\sum_{f=1}^{N} a_{f}$ mit $a_{f}>0, f=1, \ldots, N$
- $s=-\sum_{f=1}^{N} a_{f}$ mit $a_{f}<0, f=1, \ldots, N$
- Seed integrals: $r \in\left[r_{\text {min }}, r_{\text {max }}\right], s \in\left[s_{\text {min }}, s_{\text {max }}\right]$
- $S=\sum_{i=1}^{N} \theta_{j} \times 2^{j-1} \theta_{j}=1$ for each $a_{f}>0$ else $\theta_{j}=0$
- $T$ topology number

Fire [smirnov,2008] language

- Avoid reductions of scalar integrals $\notin(r, s)$
- Different public implementations: Air [Lazopoulos,Anastasiou,2004], FIRE [smirnov,2008] and Reduze [studerus,Manteuffel,201] and Kira [Maierböer, Usovitsch, Uwer, 2017]
- Kira is more powerful the less LiteRed succeeds


## Kira version 1.2

## Kira is an implementation of the Laporta algorithm

Get Kira gitlab at: https://gitlab.com/kira-pyred/kira.git

- New equation generator which is $\sim 10^{L}$ faster than Kira 1.1 multi-loop
- Improved parallelization - no openMP
- Compiles on your Mac / New build system: Meson
- Get relations from higher sectors - minimize the number of master integrals
- Start a reduction with a preferred list of master integrals
- Focus the reduction only to a subset of master integrals - set all other coefficients to zero, since Kira 1.0 and 1.1
- New flexible seed notation is introduced, while the old is preserved
- Choose between 8 different integral Laporta orderings
- Coefficient simplifications are based on heuristics
- New feature: Algebraic reconstruction multi-scale
- New feature: User defined system of equations
- Release notes: arXiv:1812.01491


## $\mathrm{gg} \rightarrow \mathrm{H}$ at 3-loops: integralfamilies.yaml

integralfamilies:

- name: Xhiggs3l1_mmmmmmm00 loop_momenta: [ 11, 12, 13 ] top_level_sectors: [511] \# important option propagators:
- [ "11", "m^2" ]
- [ "12", "m^2" ]
- [ "13", "m~2" ]
- [ "l1 - q1", "m^2" ]
- [ "12 - q1 - q2", "m^2" ]
- [ "11 - 12", 0 ]
- [ "-12 + 13 + q1 + q2", 0 ]
- [ "11 - 12 + 13", "m~2" ]
- [ "11 - 12 + 13 + q2", "m^2" ]
- \{ bilinear: [ [ "l1", "l3" ], 0 ] \}
- \{ bilinear: [ [ "12", "q1" ], 0 ] \}
- \{ bilinear: [ [ "13", "q1" ], 0 ] \}


## $\mathrm{gg} \rightarrow \mathrm{H}$ at 3-loops: Old v.s. new jobs.yaml interface

jobs:

- reduce_sectors:

```
sector_selection: # Old
    select_recursively: # Old
    - [Xhiggs311_mmmmmmm00,511] # Old
identities: # Old
    ibp: # Old
    - {r: [t, 10], s: [0, 4] } # Old
reduce: # New
    - {r: 10, s: 4} # New
select_integrals: # important option
    select_mandatory_recursively: # important option
    - {r: 10, s: 4, d: 1} # important option
```

- Kira implicitly knows from integralfamilies.yaml that the user wants to reduce the topology named: Xhiggs311_mmmmmmm00
- From top_level_sectors: [511] Kira assumes that the user wants to reduce the sector: 511


## Reduction of a $\mathrm{gg} \rightarrow \mathrm{H}$ at 3-loops non-planar topology

| Algorithm | Kira $\mathbf{1 . 1}_{(32 \text { cores })}$ | Kira $1.2_{(16 \text { cores })}$ |
| :--- | :--- | :--- |
| Generate system of equations | 7.9 h | - |
| Reduce numerically | 3.6 h | - |
| Generate and reduce numerically | - | 3.4 h |
| Build triangular form (thread pools) | 26 h | 4.8 h |
| Backward substitution (heuristics) | 18.8 d | 4.1 d |

- Seed specification: $\{r: 10, \mathrm{~s}: 4, \mathrm{~d}: 1\}$
- Speedup comes from less calls to Fermat: $382.502 .520 \times 5$ (Kira 1.1) v.s. 981 (Kira 1.2)
- After the numerical reduction over the finite field (integers modulo 64 Bit prime number) is finished, you know the master integrals


## Algebraic coefficient simplification



| Type | $T_{\text {Kira 1.1 }}^{m_{2}^{2}=\frac{3}{14} m_{1}^{2}}$ | $T_{\text {Kira 1.2 }}^{m_{2}^{2}=\frac{3}{14} m_{1}^{2}}$ | $T_{\text {Kira 1.1 }}$ | $T_{\text {Kira 1.2 }}$ | $T_{\text {Reduze } 2}^{m_{2}^{2}=\frac{3}{14} m_{1}^{2}}$ | $T_{\text {FIRE5 }}^{m_{2}^{2}=\frac{3}{14} m_{1}^{2}}$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| default | 2.4 h | 1 h | - | 11.5 h | 2.7 d | 23.5 h |
| A | 35.3 min | 28.4 min | 10 h | 5.8 h | - | 22.4 h |

- default: select_mandatory_recursively: [\{r: 7, s: 4\}]
- A: select_mandatory_recursively: [\{r: 7,s: 4,d: 0\}]
- Reduze 2 A. von Manteuffel and C. Studerus (2012), FIRE 5 A. V. Smirnov (2014) in C ++ and using the same Fermat executable.


## Algebraic reconstruction

Backward substitution gives: $I\left(\left\{a_{i}\right\}\right)=\sum_{j}^{M} C_{j} M_{j}, M_{j}$ master integral

- $C_{j}=\sum_{i=1}^{N} c_{i}$,
- $N \approx \mathcal{O}\left(10^{2}\right)-\left(10^{5}\right)$
- Naiv sum gives a snow ball effect: Intermediate sum grows to more complicated terms then the final result.
- One solution since Kira 1.0 is to constantly sort the terms $c_{i}$ and the intermediate sums in their string length.

Second solution since Kira 1.2 is the algebraic reconstruction

- Sample $\sum_{i=1}^{N} c_{i}$ by setting at least one parameter $\left\{\frac{s}{m_{1}^{2}}, \frac{t}{m_{1}^{2}}, \frac{m_{i \neq 1}^{2}}{m_{1}^{2}}, \ldots\right\}$ to integer numbers
- Interpolate the final result from these samples


## Implementation part 1

Dependence on at least 2 parameters, e.g.: $\{D, x\}, x=\frac{s}{m_{1}^{2}}$

- Sample once $C(D, x)$ for numeric value in $D$
- Get $C(x)$ rational function
- Get the degree of the polynomials (numerator and denominator) of $C(x)$ in $x: d_{N}$ and $d_{D}$
- Interpolate the numerator and denominator in $x$ individually with Newtonian approach
- Use $C(x)$ later as a reference point to eliminate sign and numeric prefactor ambiguities
- Original work in this field is based on, see arXiv: 1805.01873 1712.097371511 .01071 by Yang Zhang and his collaborators


## Implementation part 2

Sample $C(D, x) \max \left(d_{N}+2, d_{D}+2\right)$ for numeric values $x_{j}$ in $x$

- Get multiple functions $C(D, x) \rightarrow\left\{C\left(D, x_{j}\right)\right\}$
- Test that all numerators and denominators have the same number of terms, if not, resample

Interpolate the numerator and the denominator of $C(D, x)$ individually, by using the Newtonian interpolation formula

- $C(D, x)=\sum_{i=1}^{d_{N}+1, d_{D}+1} a_{i} \prod_{j=1}^{i-1}\left(x-x_{j}\right)$
- $a_{1}=C\left(D, x_{1}\right)$
- $a_{2}=\frac{C\left(D, x_{2}\right)-a_{1}}{x_{2}-x_{1}}$
- $a_{3}=\left(\frac{C\left(D, x_{3}\right)-a_{1}}{x_{3}-x_{1}}-a_{2}\right) \frac{1}{x_{3}-x_{2}}$
- $a_{d_{N}+1}=\left(\left(\frac{C\left(D, x_{d_{N}+1}\right)-a_{1}}{x_{d_{N}+1}-x_{1}}-a_{2}\right) \frac{1}{x_{d_{N}+1}-x_{2}}-\cdots-a_{d_{N}}\right) \frac{1}{x_{d_{N}+1}-x_{d_{N}}}$


## Implementation part 3

- To activate the algebraic reconstruction use: algebraic_reconstruct: true
- Kira decides based on heuristics to use the algebraic reconstruction algorithm or not
- Heuristics are: Number of terms in a sum, length of the biggest coefficients
- All implementation details are "hidden under the hood" - await improvements and more benchmarks (code is public)
- at present algebraic reconstruction kicks in only for the coefficients during the backward substitution
- Next Kira version will include the algebraic reconstruction of the whole reduction
- Possible usage: Treat coefficients of the master integrals individually


## Summary and Outlook

- Kira version 1.2 is available: https://gitlab.com/kira-pyred/kira.git and includes:
- Fast equation generator
- Improved parallelization
- New flexible seed notation, while the old is preserved
- New feature: Algebraic reconstruction
- Todo list:
- Algebraic reconstruction for the whole system, parallelization across different machines.
- Kira is an all-rounder best in all disciplines: multi-loop, multi-scale and user defined system of equations reductions

