
Laporta algorithm for multi-loop vs multi-scale problems
(with Philipp Maierhöfer and Peter Uwer)

11th FCC-ee workshop: Theory and Experiments

Johann Usovitsch

09. January 2019

1 / 16

Outline

1 Introduction

2 Implementation - Kira

3 Examples and Challenges

4 New feature

5 Summary and Outlook

2 / 16

Introduction Integration-by-parts identities applications

Integration-by-parts identities applications

Integration-by-parts (IBP)[Chetyrkin,Tkachov,1981] and Lorentz invariance
[Gehrmann,Remiddi,2000] identities for scalar Feynman integrals are very
important in quantum field theoretical computations (multi-loop
computations)
Reduce the number of Feynman integrals to compute, which appear
in scattering amplitude computations
Compute the integrals analytically or numerically with the method of
differential equations [Kotikov,1991;Remiddi,1997;Henn,2013;Argeri et al.,2013;Lee,2015;Meyer,2016]

or difference equations[Laporta,2000;Lee,2010] (require basis change and IBP
reductions)
Use the method of sector decomposition [Heinrich,2008] (pySecDec [Borowka et

al.,2018] and Fiesta4 [Smirnov,2016]) or use the linear reducibility of the
integrals (HyperInt [Panzer,2014]) to compute the Feynman integrals
analytically or numerically (require basis change and IBP reductions).

3 / 16

Introduction Scalar Integrals

Scalar Integrals

k1

p1 + k1

k2

p1 + k2

k2 − k1p1 p1

I(a1, . . . , a5) =
∫

ddk1d
dk2

[k12]a1 [(p1 + k1)2]a2 [k22]a3 [(p1 + k2)2]a4 [(k2 − k1)2]a5

Integral depends explicitly on the exponents af

Loop momenta: k1, k2, L = 2
Number of the propagators: N = 5

4 / 16

Introduction IBP Identities

IBP Identities
I(a1, . . . , a5) =

∫ ddk1ddk2
[k12]a1 [(p1+k1)2]a2 [k22]a3 [(p1+k2)2]a4 [(k2−k1)2]a5

Integration-by-parts (IBP) identities:∫
ddk1 . . . d

dkL
∂

∂(ki)µ

(
(qj)µ

1
[P1]a1 . . . [PN]aN

)
=0

c1({af})I(a1, . . . , aN−1) + · · ·+ cm({af})I(a1+1, . . . , aN) =0

qj = p1, . . . , pE , k1, . . . , kL

Express all integrals with the same set of propagators but with different exponents
af as a linear combination of some basis integrals (master integrals).

Gives relations between the scalar integrals with different exponents af
Number of L(E + L) IBP equations, i = 1, . . . , L and j = 1, . . . , E + L

af = symbols: Look for recursion relations, LiteRed [Lee,2012]

af = integers: Sample a system of equations, Laporta algorithm [Laporta,2000]

5 / 16

Introduction Laporta Algorithm

Laporta Algorithm [Laporta,2000]

Scalar integrals I(a1, . . . , a5) with integer values af

Sample system of IBP equations, Reduze [Studerus,Manteuffel,2012] language
r =

∑N
f=1 af mit af > 0, f = 1, . . . , N

s = −
∑N

f=1 af mit af < 0, f = 1, . . . , N
Seed integrals: r ∈ [rmin, rmax], s ∈ [smin, smax]
S =

∑N
i=1 θj × 2j−1θj = 1 for each af > 0 else θj = 0

T topology number

Fire [Smirnov,2008] language
Avoid reductions of scalar integrals /∈ (r, s)

Different public implementations: Air [Lazopoulos,Anastasiou,2004],
FIRE [Smirnov,2008] and Reduze [Studerus,Manteuffel,2012] and Kira [Maierhöfer, Usovitsch,

Uwer,2017]

Kira is more powerful the less LiteRed succeeds
6 / 16

Implementation - Kira Implementation details

Kira version 1.2
Kira is an implementation of the Laporta algorithm
Get Kira gitlab at: https://gitlab.com/kira-pyred/kira.git

New equation generator which is ∼ 10L faster than Kira 1.1
multi-loop
Improved parallelization - no openMP
Compiles on your Mac / New build system: Meson
Get relations from higher sectors – minimize the number of master
integrals
Start a reduction with a preferred list of master integrals
Focus the reduction only to a subset of master integrals — set all
other coefficients to zero, since Kira 1.0 and 1.1
New flexible seed notation is introduced, while the old is preserved
Choose between 8 different integral Laporta orderings
Coefficient simplifications are based on heuristics
New feature: Algebraic reconstruction multi-scale
New feature: User defined system of equations
Release notes: arXiv:1812.01491

7 / 16

https://gitlab.com/kira-pyred/kira.git

Implementation - Kira Implementation details

gg→H at 3-loops: integralfamilies.yaml
integralfamilies:

- name: Xhiggs3l1_mmmmmmm00
loop_momenta: [l1, l2, l3]
top_level_sectors: [511] # important option
propagators:

- ["l1", "m^2"]
- ["l2", "m^2"]
- ["l3", "m^2"]
- ["l1 - q1", "m^2"]
- ["l2 - q1 - q2", "m^2"]
- ["l1 - l2", 0]
- ["-l2 + l3 + q1 + q2", 0]
- ["l1 - l2 + l3", "m^2"]
- ["l1 - l2 + l3 + q2", "m^2"]
- { bilinear: [["l1", "l3"], 0] }
- { bilinear: [["l2", "q1"], 0] }
- { bilinear: [["l3", "q1"], 0] } 8 / 16

Implementation - Kira Implementation details

gg→H at 3-loops: Old v.s. new jobs.yaml interface
jobs:

- reduce_sectors:
sector_selection: # Old
select_recursively: # Old
- [Xhiggs3l1_mmmmmmm00,511] # Old

identities: # Old
ibp: # Old
- { r: [t, 10], s: [0, 4] } # Old

reduce: # New
- {r: 10, s: 4} # New

select_integrals: # important option
select_mandatory_recursively: # important option
- {r: 10, s: 4, d: 1} # important option

Kira implicitly knows from integralfamilies.yaml that the user wants
to reduce the topology named: Xhiggs3l1_mmmmmmm00
From top_level_sectors: [511] Kira assumes that the user
wants to reduce the sector: 511

9 / 16

Examples and Challenges multi-loop

Reduction of a gg→H at 3-loops non-planar topology

Algorithm Kira 1.1 (32 cores) Kira 1.2 (16 cores)

Generate system of equations 7.9 h -

Reduce numerically 3.6 h -

Generate and reduce numerically - 3.4 h

Build triangular form (thread pools) 26 h 4.8 h

Backward substitution (heuristics) 18.8 d 4.1 d

Seed specification: {r: 10, s: 4, d: 1}
Speedup comes from less calls to Fermat: 382.502.520 x 5 (Kira 1.1)
v.s. 981 (Kira 1.2)
After the numerical reduction over the finite field (integers modulo 64
Bit prime number) is finished, you know the master integrals

10 / 16

Examples and Challenges multi-scale

Algebraic coefficient simplification
p2

1 = 0 p1− k1 p1− k1+ k2 q2
2 = 0

p2
2 = 0k2− p2q1− k1

m1

q2
1 = m2

1

k1

p1−q2− k1+ k2

m2 k2

Type T
m2

2= 3
14 m2

1
Kira 1.1 T

m2
2= 3

14 m2
1

Kira 1.2 TKira 1.1 TKira 1.2 T
m2

2= 3
14 m2

1
Reduze 2 T

m2
2= 3

14 m2
1

FIRE 5

default 2.4 h 1 h - 11.5 h 2.7 d 23.5 h

A 35.3 min 28.4 min 10 h 5.8 h - 22.4 h

default: select_mandatory_recursively: [{r: 7, s: 4}]
A: select_mandatory_recursively: [{r: 7,s: 4,d: 0}]
Reduze 2 A. von Manteuffel and C. Studerus (2012), FIRE 5
A. V. Smirnov (2014) in C++ and using the same Fermat executable.

11 / 16

New feature

Algebraic reconstruction

Backward substitution gives: I({ai}) =
M∑
j
CjMj , Mj master integral

Cj =
∑N

i=1 ci,
N ≈ O(102)− (105)
Naiv sum gives a snow ball effect: Intermediate sum grows to more
complicated terms then the final result.
One solution since Kira 1.0 is to constantly sort the terms ci and the
intermediate sums in their string length.

Second solution since Kira 1.2 is the algebraic reconstruction

Sample
∑N

i=1 ci by setting at least one parameter { s
m2

1
, t

m2
1
,

m2
i6=1

m2
1
, . . . }

to integer numbers
Interpolate the final result from these samples

12 / 16

New feature

Implementation part 1

Dependence on at least 2 parameters, e.g.: {D,x}, x = s
m2

1

Sample once C(D,x) for numeric value in D
Get C(x) rational function
Get the degree of the polynomials (numerator and denominator) of
C(x) in x: dN and dD

Interpolate the numerator and denominator in x individually with
Newtonian approach
Use C(x) later as a reference point to eliminate sign and numeric
prefactor ambiguities
Original work in this field is based on, see arXiv: 1805.01873
1712.09737 1511.01071 by Yang Zhang and his collaborators

13 / 16

New feature

Implementation part 2

Sample C(D,x) max(dN + 2, dD + 2) for numeric values xj in x
Get multiple functions C(D,x)→ {C(D,xj)}
Test that all numerators and denominators have the same number of
terms, if not, resample

Interpolate the numerator and the denominator of C(D,x) individually, by
using the Newtonian interpolation formula

C(D,x) =
dN +1,dD+1∑

i=1
ai

i−1∏
j=1

(x− xj)

a1 = C(D,x1)
a2 = C(D,x2)−a1

x2−x1

a3 = (C(D,x3)−a1
x3−x1

− a2) 1
x3−x2

. . .
adN +1 = ((C(D,xdN +1)−a1

xdN +1−x1
− a2) 1

xdN +1−x2
− · · · − adN

) 1
xdN +1−xdN

14 / 16

New feature

Implementation part 3
To activate the algebraic reconstruction use:
algebraic_reconstruct: true
Kira decides based on heuristics to use the algebraic reconstruction
algorithm or not
Heuristics are: Number of terms in a sum, length of the biggest
coefficients
All implementation details are “hidden under the hood” — await
improvements and more benchmarks (code is public)
at present algebraic reconstruction kicks in only for the coefficients
during the backward substitution
Next Kira version will include the algebraic reconstruction of the
whole reduction
Possible usage: Treat coefficients of the master integrals individually

15 / 16

Summary and Outlook

Summary and Outlook

Kira version 1.2 is available: https://gitlab.com/kira-pyred/kira.git
and includes:
Fast equation generator
Improved parallelization
New flexible seed notation, while the old is preserved
New feature: Algebraic reconstruction
Todo list:
Algebraic reconstruction for the whole system, parallelization across
different machines.
Kira is an all-rounder best in all disciplines: multi-loop, multi-scale
and user defined system of equations reductions

16 / 16

https://gitlab.com/kira-pyred/kira.git

	Introduction
	Implementation - Kira
	Examples and Challenges
	New feature
	Summary and Outlook

