KoralW and YFSWW3 - lesson from LEP2 for FCCee

M. Skrzypek

in collaboration with

S. Jadach, W. Płaczek, B.F.L. Ward, Z. Wąs

Partly supported by the Polish National Science Center grant 2016/23/B/ST2/03927 and the CERN FCC Design Study Programme.

FCC Physics Workshop 8-11 Jan. 2018, CERN, Geneva

M. Skrzypek (IFJ PAN, Kraków, Poland)

KoralW and YFSWW3 ...

CERN, 8-11.01.2019 1 / 25

イロト イヨト イヨト イヨト

In a nutshell

- ► KoralW Monte Carlo contains complete process $e^+e^- \rightarrow 4$ fermions at the Born level. Radiation: multiphoton ISR YFS-type
- YFSWW3 Monte Carlo generates signal process e⁺e⁻ → W⁺W⁻ → 4*fermions* with up to O(α) electroweak corrs. in production of W⁺W⁻. It includes multiphotonic radiation from the production part in the YFS framework.
- ► KandY = KoralW \oplus YFSWW3 combined 4-fermion and $O(\alpha)$ WW
- ► KandY: is precision 0.02% at FCCee feasible ????

M. Skrzypek (IFJ PAN, Kraków, Poland)

KoralW ($e^+e^- \rightarrow 4$ fermions)

S. Jadach, W. Płaczek, M. Skrzypek, B.F.L. Ward, Z. Wąs

- Multiple soft ISR photons with finite transverse momenta generated according to YFS MC method
- FSR handled by PHOTOS
- t-channel radiation emulated for t-channel dominated final states
- Third order LO QED ISR matrix element
- Fully massive kinematics
- Fully massive four-fermion matrix element (e⁺e[−] → 4 fermions) generated by Grace system
- Two independent presamplers for the four-fermion phase space
- ► Anomalous couplings in CC03 graphs ($e^+e^- \rightarrow W^+W^- \rightarrow 4$ f)
- Coulomb correction (multiplicative)
- Semianalytical routine KORWAN for CC03

Yennie-Frautschi-Suura-1961 Exponentiation

$$\mathcal{S}(k) = J(k) \circ J(k) = \sum_{\substack{X=a,b,c,d,e,f\\Y=a,b,c,d,e,f}} J_X(k) \circ J_Y(k),$$

where Q_X is charge, $\theta = +1, -1$ for initial, final state and $J_X(k) \circ J_Y(k) \equiv J_X(k) \cdot J_Y(-k)$, for $X \neq Y$, $J_X(k) \circ J_X(k) \equiv J_X(k) \cdot J_X(k)$.

M. Skrzypek (IFJ PAN, Kraków, Poland)

CERN, 8-11.01.2019 4 / 25

YFS, 6 external legs

$$\begin{split} M^{\mu_1\mu_2...\mu_m}(k_1, k_2, ..., k_m) &= \\ &= \mathcal{M} \prod_{l=1}^m j^{\mu}(k_l) \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=1}^n \int \frac{i}{(2\pi)^3} \frac{d^4k_i}{k_i^2 - \lambda^2 + i\varepsilon} J^{\mu}(k_i) \circ J_{\mu}(k_i) \\ &= \mathcal{M} \prod_{l=1}^m j^{\mu}(k_l) e^{\alpha B_6}, \\ B_6 &= \int \frac{i}{(2\pi)^3} \frac{d^4k}{k^2 - \lambda^2 + i\varepsilon} J(k) \circ J(k). \end{split}$$

M. Skrzypek (IFJ PAN, Kraków, Poland)

KoralW algorithm

$$e^+ + e^- \longrightarrow f_1 + \overline{f}_2 + f_3 + \overline{f}_4 + n\gamma, (n = 0, 1, \ldots)$$

Write down exact analytical all order master formula with exclusive Yennie-Frautschi-Suura exponentiation:

$$\sigma = \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{j=1}^{4} \frac{d^3 q_j}{q_j^0} \left\{ \prod_{i=1}^{n} \frac{d^3 k_i}{k_i^0} \tilde{S}(\{p\}, \{q\}, k_i) \Theta\left(\frac{2k_i^0}{\sqrt{s}} - \epsilon\right) \right\} e^{Y(\{p\}, \{q\}; \epsilon)}$$
$$\times \delta^{(4)} \left(p_1 + p_2 - \sum_{j=1}^{4} q_i - \sum_{j=1}^{n} k_j \right) \times \left[\bar{\beta}_0^{(m)}(\{p\}, \{q\}) + \sum_{i=1}^{n} \frac{\bar{\beta}_1^{(m)}(\{p\}, \{q\}, k_i)}{\tilde{S}(\{p\}, \{q\}, k_i)} + \dots \right]$$

where

 $\tilde{S}(\{p\}, \{q\}, k)$ — Soft Photon Radiation Factor $Y(\{p\}, \{q\}; \epsilon)$ — YFS FormFactor $\bar{\beta}_n^{(m)}(\ldots)$ — $\mathcal{O}(\alpha^m)$ YFS Residuals for n Real Photons Four-fermion matrix el. and EW loop corrs. enter through $\bar{\beta}$'s.

KoralW algorithm II

Simplify master formula until it is analytically integrable, construct crude photonic distrib:

$$\sigma_{crude,1} = \sum_{n=0}^{\infty} \frac{1}{n!} \left\{ \prod_{i=1}^{n} \int \frac{d^3 k_i}{k_i^0} \tilde{S}(\{p\}, k_i) \Theta(k_i^0 - k_\epsilon) \right\} e^{Y(\{p\};\epsilon)} \int \prod_{j=1}^{4} \frac{d^3 q_j}{q_j^0} \sigma_{Born}$$
$$Y(\{p\}, k_\epsilon) = 2\alpha \Re B(p_1, p_2) + \int \frac{d^3 k}{k^0} \tilde{S}(p_1, p_2, k) \theta(k_\epsilon - k^0)$$

Simplify 4-fermion matrix el., integrate analytically down to 1-dim. photonic distrib.:

$$\sigma_{crude,2} = e^{Y(\{\rho\};\epsilon)} \int_0^{v_{max}} dv \gamma v^{\gamma-1} \rho(v) \sigma_{Born}^{crude}((1-v)s)$$

Generate this distribution and then generate "backwards" step by step all the photonic variables Generate fermionic final state momenta with the multi-branching algorithm and simplified Born

Undo all the simplifications by means of weights

M. Skrzypek (IFJ PAN, Kraków, Poland)

t-channel dominated radiation in $e^+e^- \rightarrow e^+e^- x\bar{x}$

Approximate solution by reweighting:

Real radiation weight: $W_{\text{ECS}} = \prod_{\text{photons}} \frac{S_{abCD}(k_i)}{\tilde{S}_{ab}(k_i) + \tilde{S}_{CD}(k_i)}$

Virtual formfactor weight:

$$W_{ECS}^{norm} = \exp\left[-\int_{\epsilon\sqrt{s}}^{\sqrt{s}} \frac{d^3k}{k^0} \tilde{S}_{ab}(k) \frac{\tilde{S}_{aC}(k) + \tilde{S}_{bD}(k) + \tilde{S}_{aD}(k) + \tilde{S}_{bC}(k)}{\tilde{S}_{ab}(k) + \tilde{S}_{CD}(k)}\right]$$

We also correct the normalisation (in Leading-log approximation):

$$W_{ECS}^{LLST} = \exp\left(\frac{3}{4}(\bar{\gamma}_t - \gamma_s)\right), \quad \gamma_s = \frac{2\alpha}{\pi} \left(\log\frac{s}{m_{el}^2} - 1\right)$$

And modify the coupling constant:

$$W_{Run} = \left(rac{lpha(t^+)lpha(t^-)}{lpha_{G_{\mu}}^2}
ight)^2$$

M. Skrzypek (IFJ PAN, Kraków, Poland)

KoralW and YFSWW3 ...

CERN, 8-11.01.2019 8 / 25

YFSWW3

S. Jadach, W. Płaczek, M. Skrzypek, B.F.L. Ward, Z. Wąs

 $e^+e^- \rightarrow W^+W^- \rightarrow 4$ fermions

- Multiphotonic radiation from the production part in the YFS framework
- Hard ISR corrected to the third order in the LO approximation
- FSR in W-decay handled by PHOTOS (*)
- O(α) in production based on calculations of J. Fleischer, F. Jegerlehner,
 K. Kołodziej, M. Zrałek, in R_ξ gauge (ξ independence checked). Two gauge-inv. versions of Leading Pole Approximation implemented in YFSWW3.

(*) Note that WINHAC Monte Carlo code for $q\bar{q} \rightarrow W^{\pm} \rightarrow f_1 f_2$ already includes YFS exponentiation in W-decays with $\mathcal{O}(\alpha)$ EW corrections from SANC and can be implemented in YFSWW3

M. Skrzypek (IFJ PAN, Kraków, Poland)

KoralW and YFSWW3 ...

CERN, 8-11.01.2019 9 / 25

YFSWW3 Master formula

$$\begin{split} d\sigma(Y) &= \\ &\sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=1}^{4} \frac{d^{3}q_{i}}{q_{i}^{0}} \left(\prod_{i=1}^{n} \frac{d^{3}k_{i}}{k_{i}^{0}} \tilde{S}(p_{1}, p_{2}, Q_{1}, Q_{2}, k_{i}) \theta(k_{i}^{0} - k_{\epsilon}) \right) \\ &\delta^{(4)} \left(p_{1} + p_{2} - \sum_{i=1}^{4} q_{i} - \sum_{i=1}^{n} k_{i} \right) \exp(Y'(p_{1}, p_{2}, Q_{1}, Q_{2}, k_{\epsilon})) \\ &(1 + \delta_{C}) \left(1 + \delta_{An}^{TGC} \right) \left\{ \bar{\beta}_{0,ISR}^{(3)} \left(\{p, Q, q\}^{\mathcal{R}} \right) + \Delta \bar{\beta}_{0,NL}^{(1)} (\{p, Q, q\}^{\mathcal{R}}) \right. \\ &+ \sum_{i=1}^{n_{l}} \frac{\bar{\beta}_{1,ISR}^{(3)} \left(\{p, Q, q\}^{\mathcal{R}}, k_{i}^{l} \right)}{\tilde{S}(k_{i}^{l})} + \sum_{i=1}^{n} \frac{\Delta \bar{\beta}_{1,NL}^{(1)} \left(\{p, Q, q\}^{\mathcal{R}}, k_{i}^{\mathcal{R}} \right)}{\tilde{S}(k_{i}^{\mathcal{R}})} \\ &+ \sum_{i>j}^{n_{l}} \frac{\bar{\beta}_{2,ISR}^{(3)} \left(\{p, Q, q\}^{\mathcal{R}}, k_{i}^{l}, k_{j}^{l} \right)}{\tilde{S}(k_{i}^{l}) \tilde{S}(k_{i}^{l})} + \sum_{i>j>l}^{n_{l}} \frac{\bar{\beta}_{3,ISR}^{(3)} \left(\{p, Q, q\}^{\mathcal{R}}, k_{i}^{l}, k_{j}^{l}, k_{i}^{l} \right)}{\tilde{S}(k_{i}^{l}) \tilde{S}(k_{i}^{l})} \right\} \end{split}$$

M. Skrzypek (IFJ PAN, Kraków, Poland) KoralW and YFSWW3 ...

YFSWW3 Master formula

Formula similar to KoralW's one, but exponentiation of real and virtual photonic radiation from *W*-pair makes the \tilde{S} -factors and YFS-formfactor *Y* more complicated:

$$\begin{aligned} Y'(\boldsymbol{p}_1, \boldsymbol{p}_2, \boldsymbol{Q}_1, \boldsymbol{Q}_2, \boldsymbol{k}_\epsilon) &= 2\alpha \Re B(\boldsymbol{p}_1, \boldsymbol{p}_2, \boldsymbol{Q}_1, \boldsymbol{Q}_2) - \frac{\pi \theta(\beta_t - \beta)}{4\beta} \\ &+ \int \frac{d^3k}{k^0} \tilde{S}(\boldsymbol{p}_1, \boldsymbol{p}_2, \boldsymbol{Q}_1, \boldsymbol{Q}_2, \boldsymbol{k}) \theta(\boldsymbol{k}_\epsilon - \boldsymbol{k}^0) \end{aligned}$$

where

$$\tilde{S}(p_1, p_2, Q_1, Q_2, k) = -rac{lpha}{4\pi^2} \left(rac{p_1}{kp_1} - rac{p_2}{kp_2} - rac{Q_1}{kQ_1} + rac{Q_2}{kQ_2}
ight)^2$$

 $Q_1 = q_1 + q_2$ and $Q_2 = q_3 + q_4$ are W^- and W^+ four-momenta The complications in \tilde{S} factors and YFS-formfactor are included by reweighting

The inclusion of $\mathcal{O}(\alpha)$ EW corrections is done in $\bar{\beta}$ functions

M. Skrzypek (IFJ PAN, Kraków, Poland)

KoralW and YFSWW3 ...

CERN, 8-11.01.2019 11 / 25

010

 \sim

Technical details of YFSWW3

- The YFS scheme, originally derived for fermions, has been extended to bosons because soft photons are "blind" to spin.
- The YFS form factors have been derived for the case of heavy massive particles (W)
- Since photons are radiated from the W-bosons with a finite width, one must do it in a way that respects gauge invariance. It has been done by adding compensating loop corrections that restore gauge invariance
- To avoid double counting of Coulomb effect in the matrix element and in YFS virtual B-function, both arising from the same type of loop corrections, a proper redefinition of the B-function was necessary

Merge of KoralW and YFSWW3 = KandY

Possible because the underlying photonic distribution is the same YFS-ISR in both codes. All other photonic effects are included as weights. So are the $\mathcal{O}(\alpha)$ EW corrs.

Concurrent realization of $\sigma_{K/Y}$ with "named pipes"

Works effectively as a single MC event generator

M. Skrzypek (IFJ PAN, Kraków, Poland)

KoralW and YFSWW3 ...

CERN, 8-11.01.2019 13 / 25

New! Exponentiation of interferences in YFS scheme

The YFS Monte Carlo scheme can be extended to exponentiate also the soft non-factorizable corrections (pink lines)

Not implemented in KoralW+YFSWW3 yet!

New extended YFS scheme will exponentiate *all* types of soft photons: Coulomb-like, non-factorizable interferences etc.

It can be a good starting point to improve threshold behavior

For now the Coulomb-like corrections are by hand removed from exponentiation in YFSWW3 – standard Coulomb corr. is added into hard residuals

M. Skrzypek (IFJ PAN, Kraków, Poland)

we focus on the WW total cross-section

At LEP2 the target precision level was 0.5%. At FCCee it is 0.02%

- Technical precision of KoralW has been estimated at 0.2% based on:
 - internal comparisons of two presamplers,
 - comparisons with other codes,
 - comparisons with semi-analytical results (for CC03 matrix el.).
- Technical precision of YFSWW3 has been estimated at 0.2% based on:
 - comparison of two technically different implementations of the code: YFSWW-2 and YFSWW-3
 - comparison with KoralW
 - comparison with RacoonWW. The difference between the two implementations (DPA vs. LPA) of the virtual plus soft $\mathcal{O}(\alpha)$ corrections to W-pair production is below 0.01% for the total cross section.

Technical improvement factor of 20 is necessary !!

M. Skrzypek (IFJ PAN, Kraków, Poland)

Numerical instabilities in 4-ferm. matrix el. of KoralW

The ratio m_e^2/s is at *WW*-tresh. of the order of 10^{-12} . Together with gauge and unitarity cancellations it leads to numerical instability in the matrix element calculations. Example in the $e^-\bar{\nu}_e\nu_e e^+$ channel:

pdg	p_x	р_у	p_z	E
11	000003412784	0000016147681	92.9831656822167 <mark>36</mark>	92.9831656836208
-12	6330003297103	.1098628636344	-11.985324403772751	12.0025314550677
12	.7715733269089	.3584158265593	-70.475962939695890	70.4810977538014
-11	1385726559201	4682770754257	-10.521878338748095	10.5332051075099
	four-fermion weight = 913570469940928			

Now modify by hand the last two digits of the p_z components of 4-mom. and rerun the event:

pdg p_x p_y p_z E 11 -.0000003412784 -.0000016147681 92.983165682216722 92.9831656836208 -12 -.6330003297103 .1098628636344 -11.985324403772731 12.0025314550677 12 .7715733269089 .3584158265593 -70.475962939695876 70.4810977538014 -11 -.1385726559201 -.4682770754257 -10.521878338748115 10.5332051075099 four-fermion weight = 25094

4-ferm. weight (matrix el.) changed by 11 orders of magnitude!

M. Skrzypek (IFJ PAN, Kraków, Poland)

Physical precision of KoralW and YFSWW3

Physical precision of KoralW has been estimated at 2% for WW physics, based on the size of the $O(\alpha)$ correction calculated by the YFSWW3 and RacoonWW codes.

Physical precision of KoralW⊕YFSWW3 has been estimated at 0.5%

- The overall agreement of YFSWW3 and RacoonWW, including all physical effects is ~ 0.3% for the total cross section at 200 GeV.
- Complete O(α) corrs. to e⁺e⁻ → 4f have been calculated for selected final states [Denner et al. arXiv:0502063] with the conclusion that above the threshold difference DPA/LPA vs. full 4f O(α) is below 0.5% of Born. At 161 GeV this difference grows to ~ 2% of Born.

Physical improvement factor of 50 is necessary !!

Other $\mathcal{O}(\alpha)$ WW Monte Carlo code – RacoonWW

A. Denner, S. Dittmaier, M. Roth, D. Wackeroth

- ► $e^+e^- \rightarrow 4f$ Born-level process and complete real correction $e^+e^- \rightarrow 4f\gamma$ in massless approx.
- ► O(α)EW virtual corrections in Double Pole Approx. based on one-loop calculations for on-shell WW production and decay.
- ISR radiation based on LO QED structure functions to second order with soft photon exponentiation.
- Soft and collinear photon singularities treated in two ways: by dipole subtraction and phase-space slicing
- Coulomb correction for off-shell W's.
- Anomalous Triple and Quartic gauge-boson couplings.
- Multichannel MC algorithm for integration and event generation

Overall precision of RacoonWW: 0.5% for WW physics

For the record – semianalytical $\mathcal{O}(\alpha)$ result

Complete semianalytical $\mathcal{O}(\alpha)$ EW calculation of $e^+e^- \rightarrow 4f$ for selected final states

A. Denner, S. Dittmaier, M. Roth, L.H. Wieders arXiv:0502063, arXiv:0505042

Overall EW precision of $\mathcal{O}(\alpha)$ semianalytical result

total cross section (161–500 GeV): few \times 0.1%

Based on estimates of missing corrections

- Higher order ISR
- ▶ Higher order EW corrs. dominated by $\alpha^2 \log(m_e^2/s) \le 0.1\%$
- Higher order Coulomb effect $\sim 0.2\%$

The QCD effects must be also included: $\mathcal{O}(\alpha_S)$ corrections including matching with Parton Shower, B–E and colour reconnection.

Calculations at the threshold

S. Actis, M. Beneke, P. Falgari, C. Schwinn arXiv:08070102 See Christian Schwinn's talk for details

- With the method of unstable particle effective theory the dominant NNLO corrections to four fermion process (µ[−] v
 µ ud
) were calculated near the WW threshold
- These corrections are related to the Coulomb effect
- ► They are nick-named N^{3/2}LO^{EFT} because in EFT a different expansion parameter, non-relativistic W velocity v² ~ (s 4M²_W)/4M²_W, is used to count the strength of particular corrections.
- The effect of N^{3/2}LO^{EFT} corrections on W mass is 3 MeV and on total cross-section 0.2 % near the threshold, thanks to some cancellations
- The drawback of the EFT method is that it provides inclusive results only.

M. Skrzypek (IFJ PAN, Kraków, Poland)

LEP2 case: MC code with $\mathcal{O}(\alpha)$ 4fermion processes was not feasible, so *pragmatic* strategy of expanding in Γ_W/M_W was used and only numerically important terms were included:

FCCee case: MC code with $\mathcal{O}(\alpha^2)$ 4fermion processes – likely

calculation out of reach, so use pragmatic approach:

- ► MC code with O(a) 4fermion process feasible, calculations and automated tools already exist
- MC with O(α²) separate corrections in WW production and in W decays, i.e. calculations O(α²) in Double Pole approx. feasible ?? see talks by: Christian: some parts of calculations already exist

Costas: $\mathcal{O}(\alpha^2)$ automated programs may appear in near future

M. Skrzypek (IFJ PAN, Kraków, Poland)

How big omitted Single Pole $\mathcal{O}(\alpha^2)$ corrs. could be?

Naive math. estimate

$$\begin{split} \mathcal{O}(\alpha)_{DP} &\sim 30\% \; (9\%) \; \textit{of Born at 161} \; (200) \; \textit{GeV} \quad \text{LO ISR}(\alpha) \; \text{included} \\ \mathcal{O}(\alpha)_{SP} &\sim \mathcal{O}(\alpha)_{4f} - \mathcal{O}(\alpha)_{DP} \sim 8\% (0.8\%) \; \textit{of} \; \mathcal{O}(\alpha)_{DP} \; \textit{at 161} \; (200) \; \textit{GeV} \\ & \quad \text{LO ISR}(\alpha) \; \text{included, *cancells* in ratio SP/DP ?} \\ & \quad \text{[calculation by Denner et al, no clear separation DP/SP/ISR given]} \\ \text{If whole} \; \mathcal{O}(\alpha^2) \leqslant 0.2\% \end{split}$$

 $\begin{array}{l} \mbox{LO ISR}(\alpha^2) \mbox{ excluded [estimate by Denner et al, Actis et al]} \\ \mbox{then } \mathcal{O}(\alpha^2)_{SP} \sim 0.2\% \times 8\% \sim 0.016\% \ (161 \ GeV) \\ \mathcal{O}(\alpha^2)_{SP} \sim 0.2\% \times 0.8\% \sim 0.0016\% \ (200 \ GeV) \end{array}$

Conclusions: Above threshold OK, At threshold a more detailed discussion may be needed

M. Skrzypek (IFJ PAN, Kraków, Poland)

$\mathcal{O}(\alpha^3)$ EW corrections

• How big omitted $\mathcal{O}(\alpha^3)$ can be?

If $\mathcal{O}(\alpha)_{DP-(ISR\ LO)} \sim 2\%$ Born Jadach et al hepph/9705429 and $\mathcal{O}(\alpha^2)_{EW-(ISR\ LO)} \leqslant 0.2\%$ Born estimate by Denner et al, Actis et al then $\mathcal{O}(\alpha^3)_{EW-(ISR\ LO)} \leqslant 0.02\%$ Born

Conclusion: $\mathcal{O}(\alpha^3)_{EW}$ seems to be just negligible.

How much of the leading $\mathcal{O}(\alpha^3)$ DP corrs. would be picked up by the extended YFS exponentiation $\ref{eq:product}$?

Conclusions and outlook

► KoralW+YFSWW3: LEP2 precision is 0.5%.

Factor of 20 \div 50 improvement is needed for FCCee

- Lesson from LEP2: be pragmatic, split into Double- and Single-Pole, pick only numerically dominant terms:
 - ► $\mathcal{O}(\alpha^1)$ for $e^-e^+ \rightarrow 4f$ must be implemented in MC with explicit split into Double Pole and Single Pole. Calculations exist
 - O(α²)_{DP} calculations for the Double-Pole production and decay parts are needed! Feasible?
 - $\mathcal{O}(\alpha^2)_{SP}$ and $\mathcal{O}(\alpha^3)$ seem to be negligible

More detailed analysis at the threshold may be instrumental

- EFT methods promising, but for now inclusive results only
- Non-factorizable soft interferences can be exponentiated within YFS scheme. How much of the higher order corrs. would be reproduced this way?

The overall precision tag $\sim 2 \times 10^{-4}$ feasible (?)

YFSWW3⊕KoralW with new exponentiation look like a good starting point

M. Skrzypek (IFJ PAN, Kraków, Poland)