Tau Physics at FCC-ee

Mogens Dam
Niels Bohr Institute
Copenhagen

First presented at Tau2018, Amsterdam
Proceedings: 1811.09408
Slightly updated for 11th FCC-ee Workshop, CERN, January 2019
The Future Circular Colliders

International collaboration to Study Colliders fitting in a new ~100 km infrastructure, in the Geneva region

- Ultimate goal:
 100 TeV pp-collider: FCC-hh
 - Defining infrastructure requirements

- Possible first step:
 e^+e^- collider: FCC-ee
 - High Lumi, $E_{cm} = 90$-400 GeV

CDR and cost review to appear Q4 2018 for European Strategy Update

Resources:
- First Look at the Physics Case of TLEP
- Physics at the FCC-hh, a 100 TeV pp collider
- 1st FCC Physics Workshop, Jan 2017
- 2nd FCC Physics Workshop, Jan 2018
Outline

a. FCC-ee
b. τ-lepton Properties and Lepton Universality
c. Lepton Flavour Violating Z decays
d. Lepton Flavour Violating τ decays
FCC-ee

Lepton beams must cross over through the common RF to enter the IP from inside. Only a half of each ring is filled with bunches.

Max. separation of 3(4) rings is about 12 m:

wider tunnel or two tunnels are necessary around the IPs, for ±1.2 km.
Luminosity & Statistics

Enormous statistics. Also for τ-leptons

<table>
<thead>
<tr>
<th>Process</th>
<th>Energy (GeV)</th>
<th>Luminosity (10^{34} cm$^{-2}$s$^{-1}$)</th>
<th>Cross Section (10^{-1} cm$^{-2}$)</th>
<th>Time (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z decays</td>
<td>91</td>
<td>$4.0 - 4.6 \times 10^{36}$</td>
<td>5×10^{12}</td>
<td>4</td>
</tr>
<tr>
<td>WW threshold</td>
<td>161</td>
<td>$5.0 - 5.6 \times 10^{36}$</td>
<td>10^{8}</td>
<td>1</td>
</tr>
<tr>
<td>ZH threshold</td>
<td>240</td>
<td>$1.4 - 1.7 \times 10^{35}$</td>
<td>10^{6}</td>
<td>3</td>
</tr>
<tr>
<td>tt threshold</td>
<td>350</td>
<td>$3.4 - 3.8 \times 10^{34}$</td>
<td>10^{6}</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$2.8 - 3.1 \times 10^{34}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Z → τ+τ-

τ-leptons

1 vs. 3 prongs: 4.2×10^{10}
3 vs. 3 prong: 3.6×10^{9}
1 vs. 5 prong: 2.8×10^{8}
1 vs. 7 prong: < 87,000
1 vs. 9 prong: ?

Enormous statistics.
FCC-ee Detector Designs

- **Baseline detector #1: CLD**
 - The CLIC detector is being adapted for FCC-ee
 - Changeover mostly straightforward
 - Smaller beam pipe radius (15 mm)
 - Inner pixel layer closer to IP
 - Smaller B field
 - Larger tracker radius (1.5 → 2.2 m)
 - Lower collision energies
 - Thinner HCAL (4.2 → 3.7 m)
 - Continuous operation (no power pulsing)
 - Increased cooling
 - Thicker pixel/tracker layers
 - Reduced calorimeter granularity

- **Baseline detector #2: IDEA Concept**
 - Main “peculiarities”
 - Extremely light drift chamber
 - Dual readout calorimeter
 - Coil inside calorimeters
Electroweak

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m_Z (MeV)</td>
<td>Lineshape</td>
<td>91187.5 ± 2.1</td>
<td>0.005</td>
<td>< 0.1</td>
<td>QED corr.</td>
</tr>
<tr>
<td>Γ_Z (MeV)</td>
<td>Lineshape</td>
<td>2495.2 ± 2.3</td>
<td>0.008</td>
<td>< 0.1</td>
<td>QED corr.</td>
</tr>
<tr>
<td>R_l</td>
<td>Peak</td>
<td>20.767 ± 0.025</td>
<td>0.00001</td>
<td>< 0.001</td>
<td>Statistics</td>
</tr>
<tr>
<td>R_b</td>
<td>Peak</td>
<td>0.21629 ± 0.00066</td>
<td>0.0000003</td>
<td>< 0.00006</td>
<td>$g \rightarrow bb$</td>
</tr>
<tr>
<td>N_ν</td>
<td>Peak</td>
<td>2.984 ± 0.008</td>
<td>0.000004</td>
<td>< 0.004</td>
<td>Lumi meast</td>
</tr>
<tr>
<td>$\sin^2\theta_W^{eff}$</td>
<td>$A_{FB}^{\mu\mu}$ (peak)</td>
<td>0.23148 ± 0.00016</td>
<td>0.0000003</td>
<td>0.0000006</td>
<td>Beam energy</td>
</tr>
<tr>
<td>$1/\alpha_{QED}(m_Z)$</td>
<td>$A_{FB}^{\mu\mu}$ (off-peak)</td>
<td>128.952 ± 0.014</td>
<td>0.004</td>
<td>< 0.004</td>
<td>QED corr.</td>
</tr>
<tr>
<td>$\alpha_s(m_Z)$</td>
<td>R_l</td>
<td>0.1190 ± 0.0025</td>
<td>0.000001</td>
<td>0.0001</td>
<td>New Physics</td>
</tr>
<tr>
<td>m_W (MeV)</td>
<td>Threshold scan</td>
<td>80385 ± 15</td>
<td>0.3</td>
<td>< 0.5</td>
<td>EW Corr.</td>
</tr>
<tr>
<td>N_ν</td>
<td>$e^+e^-\rightarrow\gamma Z, Z\rightarrow\nu\nu, l$</td>
<td>2.92 ± 0.05</td>
<td>0.001</td>
<td>< 0.001</td>
<td>?</td>
</tr>
<tr>
<td>$\alpha_s(m_W)$</td>
<td>$B_{had} = (\Gamma_{had}/\Gamma_{tot})_W$</td>
<td>$B_{had} = 67.41 ± 0.27$</td>
<td>0.000018</td>
<td>< 0.0001</td>
<td>CKM Matrix</td>
</tr>
<tr>
<td>m_{top} (MeV)</td>
<td>Threshold scan</td>
<td>173340 ± 760 ± 500</td>
<td>10</td>
<td>20</td>
<td>QCD corr.</td>
</tr>
<tr>
<td>Γ_{top} (MeV)</td>
<td>Threshold scan</td>
<td>?</td>
<td>25</td>
<td>?</td>
<td>$\alpha_s(m_Z)$</td>
</tr>
<tr>
<td>λ_{top}</td>
<td>Threshold scan</td>
<td>$\mu = 1.2 ± 0.4$</td>
<td>15%</td>
<td>?</td>
<td>$\alpha_s(m_Z)$</td>
</tr>
</tbody>
</table>

Higgs

<table>
<thead>
<tr>
<th>Coupling</th>
<th>HL-LHC</th>
<th>FCC-ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_{HWW}</td>
<td>3.5%</td>
<td>0.47%</td>
</tr>
<tr>
<td>g_{HZZ}</td>
<td>3.5%</td>
<td>0.22%</td>
</tr>
<tr>
<td>g_{Hbb}</td>
<td>8.2%</td>
<td>0.68%</td>
</tr>
<tr>
<td>g_{Hcc}</td>
<td>SM</td>
<td>1.2%</td>
</tr>
<tr>
<td>g_{Htt}</td>
<td>6.5%</td>
<td>0.80%</td>
</tr>
<tr>
<td>$g_{H\mu\mu}$</td>
<td>5.0%</td>
<td>8.6%</td>
</tr>
<tr>
<td>$g_{H\gamma\gamma}$</td>
<td>3.6%</td>
<td>3.8%</td>
</tr>
<tr>
<td>g_{Hgg}</td>
<td>3.9%</td>
<td>1.0%</td>
</tr>
<tr>
<td>g_{HHY}</td>
<td>~12%</td>
<td>?</td>
</tr>
<tr>
<td>BR_{EXOT}</td>
<td>SM</td>
<td>< 1.1%</td>
</tr>
<tr>
<td>Γ_H</td>
<td>~50%</td>
<td>1.6%</td>
</tr>
<tr>
<td>g_{Htt}</td>
<td>4.2%</td>
<td>10% (*)</td>
</tr>
<tr>
<td>g_{HHH}</td>
<td>30-50% ?</td>
<td>40% (*)</td>
</tr>
</tbody>
</table>

And on top, we can also do some tau physics...
τ-lepton properties and Lepton Universality

a) Mass
b) Lifetime
c) Leptonic branching fractions
Tau Mass (i)

- **Current world average:** $m_\tau = 1776.86 \pm 0.12$ MeV
- **Best in world:** BES3 (threshold scan) $m_\tau = 1776.91 \pm 0.12$ (stat.) $^{+0.10}_{-0.13}$ (syst.) MeV
- **Best at LEP:** OPAL
 - About factor 10 from world’s best
 - Main result from endpoint of distribution of pseudo-mass in $\tau \to 3\pi^\pm(\pi^0\nu_\tau$
 - Dominant systematics:
 - Momentum scale: 0.9 MeV
 - Energy scale: 0.25 MeV (including also π^0 modes)
 - Dynamics of τ decay: 0.10 MeV

- **Same method from Belle**
 - Main systematics
 - Beam energy & tracking system calib.: 0.26 MeV
 - Parameterisation of the spectrum edge: 0.18 MeV

 $m_\tau = 1776.61 \pm 0.13$ (stat.) ± 0.35 (syst.) MeV

Pseudo-mass:

$$M_{\text{min}} = \sqrt{M_{3\pi}^2 + 2(E_{\text{beam}} - E_{3\pi})(E_{3\pi} - P_{3\pi})}$$
Prospects for FCC-ee:

- 3 prong, 5 prongs, (perhaps even 7 prongs?)
- Statistics 10^5 times OPAL: $\delta_{\text{stat}} = 0.004$ MeV
- Systematics:
 - At FCC-ee, E_{BEAM} known to better than 0.1 MeV (~ 1 ppm) from resonant depolarisation
 - Negligible effect on m_τ
 - Likely dominant experimental contribution comes from understanding of the mass scale
 - Use high stats $e^+e^- \rightarrow \mu^+\mu^-$ sample to fix momentum scale. Extrapolate down to momenta typical for $\tau \rightarrow 3\pi$.
 - Use $D^0 \rightarrow K^-\pi^+ / K^-\pi^+\pi^-\pi^-$ and $D^+ \rightarrow K^-\pi^+\pi^+$ to fix mass scale (m_D known to 50 keV)
 - Reduce uncertainty from parametrisation of spectrum edge by use of theoretical spectrum checked against high statistics data
 - Cross checks using 5-prongs
- Suggested overall systematics: $\delta_{\text{syst}} = 0.1$ MeV
 - Could potentially touch current precision but probably no substantial improvement?
Current world average: $\tau_T = 290.3 \pm 0.5 \text{ fs}$

Best in world (Belle): $\tau_T = 290.17 \pm 0.53 \text{ stat} \pm 0.22 \text{ syst} \text{ fs}$

- Large statistics: 711 fb$^{-1}$ @ $\Upsilon(4S)$: $6.3 \times 10^8 \tau^+\tau^-$ events
- Use 3 vs. 3 prong events; reconstruct 2 secondary vertices + primary vertex
- Measure flight distance \Rightarrow proper time
- Dominant systematics: Vertex detector alignment to $\sim 0.25 \mu$m
 - Vertex detector outside 15 mm beam pipe

Best at LEP (DELPHI): $\tau_T = 290.0 \pm 1.4 \text{ stat} \pm 1.0 \text{ syst} \text{ fs}$

- "Low" statistics: $\sim 250,000 \tau^+\tau^-$ events
- Three methods:
 - Decay length ($1v3 + 3v3$), impact parameter difference ($1v1$), miss distance ($1v1$)
 - Lowest systematics from decay length ($1v3$)
 - Dominant systematics: Vertex detector alignment to 7.5 μm
 - Alignment with data ($q\bar{q}$ events): statistics limited
 - Vertex detector: 7.5 μm point resolution at 63, 90, and 109 mm
Prospects at FCC-ee

- Small beam-pipe radius (15 mm): Vertex detector with 3 μm space points at 18, 38, 58 mm
 [DELPHI: 7.5 μm @63, 90, 109 mm]

- Impact parametre resolution ~5 times better than at LEP for relevant momenta
 - DELPHI: a = 20 μm, b = 65 μm
 - Belle: a = 19 μm, b = 50 μm
 - FCC-ee: a = 3 μm, b = 15 μm

- Assume same alignment uncertainty as Belle:
 - 0.25 μm, i.e. factor 30 improvement wrt DELPHI.
 - Possible systematics on flight distance method: 1.3/30 fs
 \[\delta_{\text{syst}} = 0.04 \text{ fs} ; \quad \delta_{\text{stat}} = 0.001 \text{ fs} \]

Further prospects: lifetime can be measured with different systematics in many modes

- 1v1: impact parameter difference, miss distance
- 1v3: flight distance
- 3v3 (4x10⁹ events): flight distance sum
World average

- $B(\tau \to e\nu\nu) = 17.82 \pm 0.05 \%$ \hspace{1cm} ; \hspace{1cm} B(\tau \to \mu\nu\nu) = 17.39 \pm 0.05 \%$

Dominated by ALEPH

- $B(\tau \to e\nu\nu) = 17.837 \pm 0.072_{\text{stat}} \pm 0.036_{\text{syst}} \%$ \hspace{1cm} ; \hspace{1cm} B(\tau \to \mu\nu\nu) = 17.319 \pm 0.070_{\text{stat}} \pm 0.032_{\text{syst}} \%$

Three uncertainty contributions dominant in the Aleph measurement

- Selection efficiency: 0.021 / 0.020 \%
- Non-$\tau^+\tau^-$ background: 0.029 / 0.020 \%
- Particle ID: 0.019 / 0.021 \%
- All of these were limited by statistics: size of test samples, etc.

Prospects at FCC-ee

- Enormous statistics:

 $\delta_{\text{stat}} = 0.0001 \%$

- Systematic uncertainty is hard to (gu)estimate at this point.
 - Depends intimately on the detailed performance of the detector(s)
 - At the end of the day, between LEP experiments, δ_{syst} varied by factor ~ 3
 - Lesson: **Design your detector with care!**

With the large statistics we will learn a lot. Suggest a factor 10 improvement wrt ALEPH:

$\delta_{\text{syst}} = 0.003 \%$
Summary of Precisions & Lepton Universality

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m_τ [MeV]</td>
<td>Threshold / inv. mass endpoint</td>
<td>1776.86 ± 0.12</td>
<td>0.004</td>
<td>0.1</td>
<td>Mass scale</td>
</tr>
<tr>
<td>τ_τ [fs]</td>
<td>Flight distance</td>
<td>290.3 ± 0.5 fs</td>
<td>0.001</td>
<td>0.04</td>
<td>Vertex detector alignment</td>
</tr>
<tr>
<td>$B(\tau\rightarrow e\nu\nu)$ [%]</td>
<td>Selection of $\tau^+\tau^-$, identification of final state</td>
<td>17.82 ± 0.05</td>
<td>0.0001</td>
<td>0.003</td>
<td>Efficiency, bkg, Particle ID</td>
</tr>
<tr>
<td>$B(\tau\rightarrow \mu\nu\nu)$ [%]</td>
<td></td>
<td>17.39 ± 0.05</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lepton Universality Tests:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Measurement</th>
<th>Current precision</th>
<th>FCC-ee precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>g_\mu/g_e</td>
<td>\Gamma_{\tau\rightarrow \mu}/\Gamma_{\tau\rightarrow e}$</td>
<td>1.0018 ± 0.0014</td>
</tr>
<tr>
<td>$</td>
<td>g_\tau/g_\mu</td>
<td>\Gamma_{\tau\rightarrow \tau}/\Gamma_{\mu\rightarrow e}$</td>
<td>1.0030 ± 0.0015</td>
</tr>
</tbody>
</table>

With the precise FCC-ee measurements of lifetime and BRs, m_τ could become the limiting measurement in the universality test.

$\left(\frac{g_\tau}{g_\mu}\right)^2 \approx \frac{\tau_\mu}{\tau_\tau} \frac{BF(\tau^- \rightarrow e^-\nu_e\nu_\tau)}{\left(\frac{m_\mu}{m_\tau}\right)^5}$

Lepton universality with $m_\tau = 1776.86 \pm 0.12$ MeV
LFV Z decays
Z → e\(\tau\) and Z → \(\mu\tau\)

- **Current limits:**
 - \(\text{Br}(Z \rightarrow e\tau) < 9.8 \times 10^{-6}\) LEP/OPAL \((4 \times 10^6 Z\) decays\)
 - \(\text{Br}(Z \rightarrow \mu\tau) < 12. \times 10^{-6}\) LEP/DELPHI \((4 \times 10^6 Z\) decays\)

- **Method:**
 - Identify **clear tau decay** in one hemisphere
 - Look for **“beam-energy” lepton** (electron or muon) in other hemisphere

- **Limitation:** How to define **“beam-energy” lepton**
 - Unavoidable background from \(\tau \rightarrow e\nu\nu / \tau \rightarrow \mu\nu\nu\) with two (very) soft neutrinos
 - How much background depends on energy/momentum resolution
 - Example DELPHI

Z.Phys. C73

\[
\frac{dN}{d(p/E_{beam})}
\]

DELPHI

- \(\mu\) from \(Z \rightarrow \mu\mu\)
- \(\tau \rightarrow \mu\nu\nu\)
Z → ℓτ - Study of Sensitivity

- Generate very upper part of μ momentum spectrum from τ → μνν decays
 - Luminosity equivalent to 5x10^{12} Z decays
- Inject LFV signal of adjustable strength
 - Here for illustration, Br(Z → τμ) = 10^{-7}, i.e. 500,000 e/μ
- Smear momentum by variable amounts, here 1.8 x 10^{-3}
- Define x > 1 as signal region
- Derive 95% confidence limit on excess in signal region
- Findings:
 - Sensitivity scales linear with momentum resolution
 - FCC-ee detectors have a momentum resolution at p=45.6 GeV of about 1.5 x 10^{-3}
 - Ten times better than for LEP detectors
 - Add contribution from beam-energy spread (0.9 x 10^{-3}). Total: 1.8 x 10^{-3}
- Sensitivity for 5 x 10^{12} Z decays, δp/p = 1.8x10^{-3}, 25% signal and bkg efficiency (clear tau)
 - For Z → τμ, sensitivity down to BRs of 10^{-9}
 - For Z → τe, similar sensitivity 10^{-9}
 - Momentum resolution of electrons tend to be slightly worse than muons due to bremsstrahlung.
 However, downwards smearing is not a major concern.
Z → eμ

- **Current limit:**
 - 7.5×10^{-7} LHC/ATLAS (20 fb$^{-1}$; no candidates)
 - 1.7×10^{-6} LEP/OPAL (4.0 x 106 Z decays: no candidates)

- **Clean experimental signature:**
 - Beam energy electron vs. beam energy muon

- **Main experimental challenge:**
 - **Catastrophic bremsstrahlung energy loss** of muon in electromagnetic calorimeter
 - Muon would deposit (nearly) full energy in ECAL: Misidentification $μ → e$
 - NA62: Probability of muon to deposit more than 95% of energy in ECAL: 4×10^{-6}
 - Possible to reduce by
 - ECAL longitudinal segmentation: Require energy > mip in first few radiation lengths
 - Aggressive veto on HCAL energy deposit and muon chamber hits
 - If dE/dx measurement available, (some) independent $e/μ$ separation at 45.6 GeV
 - Could give handle to determine misidentification probability $P(μ → e)$
 - Notice: ATLAS uses transition radiation as part of electron ID.

- **FCC-ee:**
 - Misidentification from catastrophic energy loss corresponds to limit of about $Br(Z \rightarrow eμ) \approx 10^{-8}$
 - Possibly do $O(10)$ better than that $Br(Z \rightarrow eμ) \sim 10^{-9}$ (probably even 10^{-10} with IDEA dE/dx)
LFV τ decays

Signal side

Tag side

Signal side

Tag side
τ^- → e^-γ, τ^- → μ^-γ

- **Current limits:**
 - $\text{Br}(\tau^- \rightarrow e^-\gamma) < 3.3 \times 10^{-8}$
 BaBar, 10.6 GeV; $4.8 \times 10^8 \, e^+e^- \rightarrow \tau^+\tau^- : 1.6 \text{ expected bckg}$
 - $\text{Br}(\tau^- \rightarrow \mu^-\gamma) < 4.4 \times 10^{-8}$
 3.6 expected bckg

- **Main background:** Radiative events (IRS+FSR), $e^+e^- \rightarrow \tau^+\tau^-\gamma$
 - $\tau \rightarrow \mu\gamma$ faked by combination of γ from ISR/FSR and μ from $\tau \rightarrow \mu\nu\nu$

- **At FCC-ee, with 1.7×10^{11} $\tau^+\tau^-$ events, what can be expected?**
 - Boost 4 - 5 times higher than at superKEKB
 - Detector resolutions rather different, especially ECAL
 - Parametrised study of signal and the main background, $e^+e^- \rightarrow \tau^+\tau^-\gamma$, performed
 - See two following pages
 - From this study (assuming a 25% signal and background efficiency), projected BR sensitivity: 2×10^{-9}
Generate signal events with pythia8: $e^+e^- \to Z \to \tau^+\tau^-(\gamma)$, with $\tau^- \to \mu^-\gamma$

In order to de-corrrelate the E and m variables, this mass, $m_{\gamma\mu}$, is in fact the measured mass scaled by measured energy over beam energy:

$$m_{\gamma\mu} = m_{\text{raw}} \times (E_{\gamma\mu}/E_{\text{beam}})$$

Smear with assumed FCC-ee detector resolutions:
- Muon momentum [GeV]
 $$\sigma(p_T)/p_T = 2 \times 10^{-5} \times p_T \oplus 1 \times 10^{-3}$$
- Photon ECAL energy [GeV]
 $$\sigma(E)/E = 0.165/\sqrt{E} \oplus 0.010/E \oplus 0.011$$
- Photon ECAL spatial
 $$\sigma(x) = \sigma(y) = (6/E \oplus 2) \text{ mm}$$

From this, determine **FCC-ee** effective detector resolution for $\tau \to \mu\gamma$

$$\sigma(m_{\gamma\mu}) = 26 \text{ MeV}; \quad \sigma(E_{\gamma\mu}) = 850 \text{ MeV}$$
τ → μγ Study – The background

- **Background:** Generate 5×10^8 events $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-(\gamma) \rightarrow (\mu^+\nu\nu)(\mu^-\nu\nu)(\gamma)$
 - $1 \times 10^9 \tau \rightarrow \mu\nu\nu$ decays corresponding to
 - $5.7 \times 10^9 \tau$ decays from 8.4×10^{10} Z decays
 - Study all μ and γ combinations

![Plot showing $E_\gamma - E_\mu$ vs $m_{\mu\gamma}$](image-url)

- $1.7 \times 10^7 \mu\gamma$ combinations
- 6080 $\mu\gamma$ combinations
- 2σ contours
- 500 combinations
- FCC-ee detector resolution
- Flat linear rise
\[\tau^- \rightarrow \ell^- \ell^+ \ell^- \]

- **Current limits:**
 - All 6 combs. of e^\pm, μ^\pm: $\text{Br} \lesssim 2 \times 10^{-8}$ Belle@10.6 GeV; $7.2 \times 10^8 e^+e^- \rightarrow \tau^+\tau^-$: no cand.
 - $\mu^-\mu^+\mu^-$: $\text{Br} < 4.6 \times 10^{-8}$ LHCb 2.0 fb$^{-1}$: background candidates

- **FCC-ee prospects**
 - Expect this search to have very low background, even with FCC-ee like statistics
 - Should be able to have sensitivity down to BRs of $\lesssim 10^{-10}$

- Many more decay modes to search when time comes...
Summary

- With an unrivalled luminosity, the four stage FCC-ee programme foresees the production of 5×10^{12} Z decays in its first stage
- A treasure trove for precision measurements and discoveries
- Of most direct relevance to this conference is the production of 1.7×10^{11} $\tau^+\tau^-$ pairs:
 - Improved lepton universality test by $O(10)$ or more. Down to 10^{-4} level on coupling ratios
 - Substantial improvement in τ lifetime measurement: $O(300)$ statistical, $O(10)$ systematic
 - Substantial improvement in τ branching fractions: $O(300)$ statistical, $O(-10)$ systematic
 - Possibly competitive measurement of τ mass
 - Searches for lepton flavour violating Z decays more sensitive than today by factor $O(10^4)$
 - Sensitivities down to 10^{-9}
 - Searches for lepton flavour violating τ decays with sensitivities comparable with recent Belle2 projections (arxiv:1808.10567)
 - $\lesssim 10^{-10}$ (for channels with no background) to few $\times 10^{-9}$
- Plus, of course
 - Tau polarisation measurement for $\sin^2\theta_W$, α_S, τ neutrino mass, etc., etc.
Extra Slides
Scaling of $Z \rightarrow \ell \tau$ sensitivity with #events

With backgrounds $1/\sqrt{N}$ scaling

If no backgrounds $1/N$ scaling
τ → μγ Study – Check of method

Cross check: Perform similar study at B-factory, \(\sqrt{s} = 10.6 \text{ GeV} \)

- Again \(5 \times 10^8 \) events \(e^+e^- \rightarrow Z \rightarrow \tau^+\tau^- (\gamma) \rightarrow (\mu^+\nu\nu)(\mu^-\nu\nu)(\gamma) \)

From this study, estimated limit: \(1.9 \times 10^{-9} \)

Compare to my extrapolation of current BaBar limit: \(\sim 3-4 \times 10^{-9} \)

Agrees within a factor 2

Not too bad