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Calorimetry requirements

Example: W/Z separation
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To statistically separate these two Higgs decay modes it is needed
to reconstruct the Z and W invariant masses from jet decays with
a resolution of = 3 GeV.

30 %

o
k

Such an energy resolution has been achieved for hadrons by
calorimeters compensating by neutron boosting (e.g. SPACAL,
ZEUS Calorimeter). But in future we could do better...
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Non compensation
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Electromagnetic component:
electrons, positrons and photons

Non-electromagnetic component:
charged hadrons, nuclear fragments,
neutrons, invisible energy

The calorimeter response is different
for the two components:
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Non compensation problems

Event-by-event fluctuations of the electromagnetic component are
non symmetrical, with an average value increasing with the energy.
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All non compensating calorimeters, in hadron detection, exhibit:

A non symmetrical reconstructed energy
A non linear reconstructed energy
An energy resolution much broader than 30%/,/E

D. Acosta, et al., Nucl. Instrum. Methods A316 (1992) 184.
N. Akchurin, et al., Nucl. Instrum. Methods A399 (1997) 202.




The only way to overcome the non compensation limits is to measure the
electromagnetic fraction event-by-event and correcting for its value.

Scintillation signal from scintillating fibers: every ionizing particle
passing through them release a light signal.

S = E[fem + <ﬁ> (1 = fem)]
e

Cherenkov signal from clear-plastic fibers: every relativistic charged particle
(almost exclusively electrons) passing through them release a light signal.

C = E[fem + <ﬁ> (1 — fem)]
e
fem+< ) (1 — fem) i

It is possible to estimate fem by measuring the
ratio of the two signals event-by-event!
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Why is it better than the past?

Usually, h/e < 1:
the main source of that is the invisible energy affecting only the non-
electromagnetic component.
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S. Lee, M. Livan, R. Wigmans, Nucl. Instr. and Meth. in Phys. Res. A 882 (2018) 148.
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Why is it better than the past?

Hints of this better correlation were already present in datal
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How to apply it?

After a calibration with electrons, the S and C reconstructed energy
must be combined with:

S—)(C 1_(h/e)s
E = y =
1—)( 1_(h/e)c

This equation correctly reproduces both the electron and the hadron energies:
everything is calibrated at the electromagnetic scale, i.e. with electrons.

‘ The )( factor IS unlversal It does not depend on energy or partlcle type' 1]
l It does onIy depend on the materlals and geometry




No dependence of the x factor on the particle energy and type
IS observed with simulations.
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Absorber materials

The material with the smaller (h/e)s —> Keep it high
X factor will result in the better
hadronic resolution. (h/e)c — Keep it low

Hadronic resolution at 1 GeV vs. X
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Em performance

The sampling fraction can be raised up as much as possible
(not possible with calorimeters compensating by neutron boosting).

The scintillation and Cherenkov signals represents
for electrons two independent signals.
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Machine Learning

A new machine learning inspired technigque is a promising solution to also
exploit calibrations with hadrons.
The single event under reconstruction is compared to only pre stored events
with approximately the same electromagnetic fraction.
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ML Energy
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Two is better than one

It turns out that with this calibration with hadrons it is possible to
reconstruct also the energy of electrons.

40 GeV e reconstructed with the DR method and the ML method
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Simplified jet study

Simplified jet model assuming:
fragmentation function jet composition

(1 -2~
Z 90 % pion 10% kaon

D) =(a+1)

a=3
Z = Jjet energy fraction 30 % neutral 70 % charged

Electrons and gammas

Hard hadrons
(undergoing nuclear interactions) Yes

1l —y

. Soft hadrons ? usually . £ 1
Does it reconstruct the correct (behaving like mips) mip

enerqy for all the particles? .




Simplified jet structure
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Simplified jet structure
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The calorimeter has to deal with:
constant number of hard hadrons + increasing number of soft hadrons




Jet reconstructed energy

DR method

DR Energy
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Machine Learning
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Jet energy resolution
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x? / ndf 0.8357 /2 %2 I ndf 2.531/2
pO 0.2651 = 0.005045 pO 0.2554 = 0.005273

p1 0.003364 + 0.0007144 p1 0.00647 = 0.000758

Sigma/Mean
Sigma/Mean

LIIII|IIII|IIII|IIII|IIII|IIII|IIII|I

1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1
80 70 80
Energy (GeV) Energy (GeV)

Geant4 - Preliminary




Particle Identification

Four different particle identification
techniques have been studied with data
reaching a 99.8% electron/hadron
identification efficiency.
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N. Akchurin, et al., Nucl. Instr. and Meth. in Phys. Res. A 735 (2014) 120.

20

Several particle identification
techniques under implementation
in simulations.

Tools:

C/S always available

Different time structure
(under development)

Granularity and clustering
algorithms




SiPM based readout
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Event displays in a
1.2x1.2cm?
brass module.

Most precise measurement
of the electromagnetic
radial profile
close to the shower axis.

M. Antonello, et al, Nucl. Instr. and Meth. in Phys. Res. A 899 (2018) 52.
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2D Granularity-SiPM Readout

80 GeV 11
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A 100 GeV mnY decaying 2 m before the calorimeter is identified as two
electromagnetic showers.
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Multiple particles in DR - preliminary work
Separation using clustering algorithm in development

Molly Jensen, supervised by Mogens Dam, Niels Bohr Institute

 Study tau physics:
T = p vy (17.39%)
e T, (17.82%)
T =7 v, (10.82%)
T = mr, (25.49%)

The goal is to separate decay channels
and measure the energy of each decay
product, to reconstruct the energy of
the mother particle

» Easy to cluster EM showers
In both scintillation and
Cherenkov signal, e.qg.
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Plot shows two reconstructed clusters outlined by red

and blue. Particle gun 2 m from calorimeter surface.
Towers of 4x4 fibers: 8 Scintillating, 8 Cherenkov.
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4nt fully projective geometry
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The final number of wedges will be a balance
between the mechanical limitations and the expected performance.

8 wedges 283 wedges

Currently under implementation within the FCCSW
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Delphes IDEA Fast Sim

A first implementation of a fast simulation card with Delphes is based
on single detector performances. See Elisa Fontanesi’s talk.
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Conclusion

There are indications to believe a dual-readout calorimeter to be
the fundamentally most precise calorimeter for hadron detection ever.

A significant effort on the software is certainly needed,
to complete the assessment

we hope a strong collaboration will cluster around it.




