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Track fitting — general consideration

Kalman Filter is a standard method for Track ﬁtting in HEP (alternatives excist but are still not good
as KF for this problem)

1960: R. Kalman, “A New Approach to Linear Filtering and Prediction Problems”, Trans. ASME (J.
Basic Engineering), 82 D, 35-45, 1960

One of the first applications: guiding Apollo 13 to the moon

Now widely used: in just about every inertial navigation system(GPS, gyro systems), radar tracking

First paper in HEP with equivalent equations:
1984: P. Billoir, “Track Fitting With Multiple Scattering: A New Method,” NIM A (1984) 352

Classic author of Kalman Filter for HEP:
1987: R. Fruhwirth, “Application of Kalman filtering to track and vertex fitting”, NIM A 262 (1987) 444

peculiarities:
recursive least-squares estimation;
suitable for combined track finding and fitting;
mathematically equivalent to least squares fit;
avoids time-consuming large matrix inversion inherent in least-squares fits;

straightforward to take into account material effects in extrapolation step.
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parameter vector with error matrix

on the current plane

defined by angle and distance to origin

1
ny = {y, z, (A),E}

propagated to next plane

k+1 ,k+1
Nk Lk

updated select new hit by chisquare
propagated k+l ~k+1
Updated by weighted mean of
parameter vector and measurement
Some matrix formalism Prediction }_’k|k = l_7k|k_| +K, (%, - Hkﬁk\k—])

. . _ _ dated . .
T;li;fhe’ but meaningis  p =F,p, | " tz;e K, =C,, H/(V, +H,C, H!)"
simple:
recursive usual y? averaging Chpa = Fka—]\k—]Flj +P,Q, P/ C,=0-KH)C,
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Basic Principle of Kalman Filter
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with equation of motion — = (1_7) X B)
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multiple scattering, energy loss fluctuation
Q Updated by Welglzited mean of
2| e parameter vector and measurement K41
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H - projection matrix from parameters to measurement
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Variations of Kalman Filter

It can be some variations in implementation(most of them just matter of
terminology for specific cases) or with extensions

SRKF — Square Root Kalman Filter:
Covariance matrix decompose in square root form
— can give numerical stability
Information Kalman Filter:
rewritten in form of inverse covariance matrix
- useful when some parameters can have infinite sigma
GSF — Gaussian-Sum Filter:
to deal with not gaussian fluctuations - instead of single Gaussian,
pdfs modeled by mixture of Gaussians (implemented as a number of Kalman
Filters run in parallel)
CKF - The Combinatorial Kalman Filter
Integrate track fitting and pattern recognition
— track splitted in case of few compatible hits
DAF — Deterministic Annealing Filter
On a same surface, several hits may compete for track with different weights
— good for outliers removal
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Track fitting — specific implementation aspects

How to use?
Many software packages implement KFs and are available and ‘easy to use™
[ genF 1t2: https://github.com/GenFit/GenFit
(arXiv:1410.3698 , NIN A620(2010)518-525) used byz
o PANDA
0 Belle IT

Q

» ACTS: http://acts.web.cern.ch/ACTS/index.php

o ATLAS
o FCC-sw
m  etc...
o D)
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Track fitting — specific implementation aspects

What do we need to do?

= pass measurement points with their proper description

0 3D (2D) point (pixel)
0 1D point (strip)

o Drift distance

virtual detector plane

Fig. 3. Viral detector plane (spanning vectors if and ¥) for a wire-based drift
detector.

= delivery a description of the material to allov the MS and AE evaluation
o genFit2: GDML description
2 ACTS: DD4Hep
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‘ Track fitting — specific implementation aspects

genFit2 example, PIXEL:

TMatrixDSym hitpxlCowv(2);
hitpxlcov.UnitMatrix();
hitpxlcov *= pxlResolution*pxlResolutionsSndsd;

const CLHEP::Hep3Vector& lclmid = fGeometry->GetPSHWROChanHandle () ->GetRCChanCenterLcl () ;

TVectorD hitCoords(2) ;

hitCoords[0] = 0.1*lclmid.x():

hitCoords[l] = 0.1*lclmid.z():

genfit::PlanarMeasurement* measurement = new genfit::PlanarMeasurement (hitCoords, hitpxlCowv, 2, ihit, nullptr);
const CLHEP::Hep3Vectors& ldmid = fGeometry->GetPSHWROChanHandle () -=>GetROLayerMidPoint () ;

const CLHEP::Hep3Vectors& 1dFstSdDir = fGeometry->GetPSHWROChanHandle () =>GetLadderFstSdDir() ;

const CLHEP: :Hep3Vector& 1dSndSdDir = fGeometry->GetPSHWROChanHandle () ->GetLadderSndsdDir () ;

TVector3 1dMid(0. *1dmid.x(),0.1*1ldmid.y(),0. *1dmid.z())

TVector3 udir(ldFstSdDir.x(),ldFstSdDir.y(),1dFstSdDir.z()) ;
TVector3 wvdir(ldSndsSdDir.x(),1ldsndsdDir.y(),1dSndSdDir.z());

measurement->setPlane (genfit: :SharedPlanePtr (new genfit::DetPlane (1dMid, udir, vdir)), 0):
fitTrack.insertMeasurement (measurement ,nid++) ;

D)
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‘ Track fitting — specific implementation aspects

TVector3 wire pos(mid.x() ,mid.y () ,mid.z());
TVector3 wire dir(w.x() ,w.yv() ,w.z());

Double t b meas = ahit=->GetfImpact() ;

//fill mesuarements
TVector3 p0 = 0. *wire pos;
TVector3 w axis = wire dir;
double wno;m=w_axis.Ma§{);
TVectorD hitCoords(5) ;

gCnFltZ example, TMatrixDSym hitCowv(9) ;
. . //fill wire ends
Drift distance: for (int i=0;i<3;i++){
hitCoords (i)=(p0+100*%w_axis) (i) ;
hitCoords (i+3)=(p0-100*w_axis) (i) ;

}

//mesuared values dist,Z:

double sigmab=GetSP()->GetSigmaRPhi() ;

hitCoords(¢) = b meas*0. +gRandom->Gaus () *sigmab;

//z mesuarment are relative to wirel in direction of wire2

hitCoords(7) = 100.*wnorm;
hitCov(c,c) = sigmab*sigmab;
hitCov (7,7} = 100*.00;

WireMeasurement *whit;
if (l==0){//use Z

whit=new WirePointMeasurement (hitCoords, hitCowv,(,ihit,nullptr);
lelsze(

whit=new WireMeasurement (hitCoords, hitCov,(,ihit,nullptr) ;
}
whit->setlLeftRightResolution(d) ;//1>021:-1);
fitTrack.insertMeasurement (whit ,nid++) ;
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Track finding — general aspects and useful options for IDEA case

Track finding possible strategies: global vs local methods
= global methods

0 treat hits in all detector layers simultaneously

o ‘find all’ tracks simultaneously

o result independent of starting point or hits order

examples: template matching, Hough transforms (conformal mapping), neural nets,
cellular automation, ....

= local methods (‘track following’)
0 start with construction of track seeds

0 add hits by following each seed through detector layers

0 eventually improve seed after each hits
16GeV i+

produce 4702
RecPoints

Stereo Drift Chamber peculiarities for PR: :

= Left/Right single cell ambiguity Fos
= Longitudinal position along the wire (in the F.
transverse plane appear two separate circonpherences |
for the same track before applaying a correction for the © A

position along the wire)

01/10/19 G.F. Tassielli - 11th FCC-ee workshop - CERN




Track finding - current IDEA PR (Local Method)

Follow track candidate iteratively L weee e
through detection layers -
start from an initial track segment (“seed”)

requires dedicated algorithm k+1 K k-1 k-2

extrapolate: estimate the expected track position in the next detection layer
search: look for hits within a window around the estimated track position
update: if a hit is found inside this search window, add it to the track
candidate and update the track parameters
iterate: extrapolate the updated track candidate to the next detection layer

should be broad seeding: track reconstruction efficiency can depend on it, compromise
between efficiency and CPU performance

allow for detector inefficiencies: if no hit is found in one layer, continue with the next
layer; abandon the candidate if no hits are found in several consecutive layers

allow for combinatories: if more than one hit is found inside the search window, create a
separate “branch” for each candidate; follow all branches concurrently
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Track finding - current IDEA PR (Local Method) (DCH only)

Seeding from 2 pairs of hits (each pair on same layer) pointing at the origin

2 consecutive hits in same layer

— 4=2x2(Left-Right) pairs with direction
2 pairs from nearest layers compatible:
| Acos(yp(direction)-g(position)) | <0.2,
crossing Z inside DCH
1 pair with origin — Pt estimate
(averaged over 2 pairs)
Cross Point of 2 opposite stereo pairs give
Z-coordinate (with Ay correction from Pt)

Pz =0 at beginning

Z measurement give additional compatibility check
between 2 hits and between 2 pairs

Red hits projection at z=0 plane
rotated according to ¢

Combinatory low: 2 local compatibilities + 1 from
opposite stereo view, but with direction angle check

/)
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Track finding - current IDEA PR (Local Method) (DCH only)

Seeding from 3 hits in different layers with origin constraint
Take any 2 free hits from different stereo layers with a gap
(4 or 6 layers)

Cross Point of 2 wires give Z-coordinate (must be inside
lum
DCH volu C) Seeding with beam constrai&

Select nearest free hits at middle (+-1) layer o
2 hits from same stereo layer give initial angle in Rphi

origin added with sigma Rphi~ 1mm Z ~ 1mm

Seeds constructed for all 2x2x2=8 combination of Left-Right
possibilities

Checked that at -4 (+-1) layer are available free hits with

2 <16

Extrapolate and assign any compatible hits (by x?) from last to

first hits Combinatory high:

local compatibility over
different layers,

Refit segment to reduce beam constraint
Check quality of track segment:

o y*/NDF <4

Q number of hits found (>=7)

Q number of shared hits (<0.4Nfound)
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Track finding - current IDEA PR (Local Method) performance

efficiency

10 p's (0-100 GeV), DCH only (no longitudinal info used) with Z vtx preselection of seeds

eff ~99.5%

particle separationAyp, ~ 0.005 rad

efficiency to find 0.6nhits at 1 turn(|cos th|<0.8 over all tracks

to be tested for secondary particles

with vertex out of the SVX

efficiency to find 0.6nhits at 1 turn(P>1GeV) over all tracks
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Summary

KF using genFit2 is implemented for the IDEA detector;
KF in FCC-sw is available and could be interfaced to IDEA detectot;

Current PR for the IDEA detectors is developed using a local method
approach;

It reached a good performance but need to be tested with jets and with

expected background and improvements are possible;
It is available as an external software package;

Different PR approach based on Global method (ex. Hough transform

based) could be investigated.

Thanks for your attention

I
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IDEA — layout vl — Expected tracking performance
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IDEA — layout vl — Expected tracking performance
Additional layer made of 450um Si:

Transverse Momentum Resolution

2

GPP

Pe
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Additional layer made of AIR:
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IDEA — layout vl — Expected tracking performance
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IDEA — layout vl — Expected tracking performance

Additional layer made of AIR: Additional layer made of 450um Si:
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The MEG2 Drift Chamber Performance

Intagrated on all impact parameters
P
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Starting point: Hit simulation approaches

Common steps:
reject the ionization acts releasing less that 10 eV in the gas or that has a G4Step length less than 5um;
assign the G4Step to the corresponding drift cell (resolve some geometric equations);
evaluate the Distance of Closest Approach for each track crossing a cell;

convert the DCA in time, smear it with the resolution (converted in time) and sum it to the signal
propagation time along the wire and to the particle flight time;

all the obtained hit times for a cell are time ordered;

Simple model for the hit creation:
Constant drift velocity (ex. 2 cm/us), B field effects neglected;
spatial resolution, gaussian and constant with respect to the impact parameter, (~ 100um);
the hits with a time difference shorter than the maximum drift time (for the cell) are grouped together;
(eventually evaluate the expected Number of Clusters);
Create the hit needed by the reconstruction;
Detailed model (not yet implemented):
Use a realistic XT relation;
Simmulate in detail the Cluster generation and the Signal Waveforms;
Analyze the waveform and extract the reconstructed Impact parameter and dN/dX and dE/ dx.
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‘ DCH Geometrical parameters

+stereg e
tracking efficiency € = 1 0.016 X, to barrel calorimeter . B : 'ZliPPiE ..%-:-
° . . ayers X
for9>14" (260 mrad) 0.050 X, to end-cap calorimeter x E} x = .o .

97% solid angle . . e(; sssseseces
- ster
service area
0.20m 0.016 X | s— (F.E.E. included) - 12=15 mm wide square
. t .
0.045 X, N ° — ccveere cells 5: 1 field to sense
0,050 x r=2.00m wires ratio
T 11} layers o1 = 56,448 cells
Front Plate -15 min cell width h = 14 co-axial super-layers,
e all0.0008 X r=035m 8 layers each (112 total)
| w . . .
0 z-axis in 24 equal azimuthal
56,000 cells (15° ) sectors
340,000 wires (N;=192 +(i—-1) x 48)
(0@9213‘“83;0007 Xo/m) = alternating sign stereo

angles ranging

outer wall|0.012 X, from 50 to 250

z=2.00m

mrad
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