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Approximate data distribution       with another distribution       

                                                                                             = distribution parameters   

Learn prior distribution:
Maximizing Likelihood
Variational Autoencoder

Learn to generate samples following
Without using directly     
Train a generator only→ GANs

Generative Models
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Train a Generator
● Objective: learn to generate new samples following 

● Learn a function that transform a distribution          into       using a generator   

                  →  latent space

● Generator        is implemented as neural network with weights 

Noise input
GeneratorGenerator

Samples following  
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● Hard to formulate a supervised training loss

 
● Use unsupervised training to train the generator

  Objective: 
  Measure: given by second neural network

→ Generated samples of generator should be

     similar to real samples after training 
  without reproducing training data

Generative Adversarial Networks

→ Adversarial approach:

Train 2 networks adversarial (against each other)

GeneratorGenerator

Art forger
Wants to create some fake 

images
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GeneratorGenerator

Input
Noise

Generator

Fake 
paintings

Input
Real paintings

GeneratorGeneratorGenerator

Fake 
paintings

This is a fake
image!

I’m sure with 95%!

Let’s tune the weights
to minimize the probability

Input
Noise

DiscriminatorDiscriminator

Train Discriminator Train Generator
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Adversarial Training

Training 2 networks at the same time is challenging

● Train generator and discriminator iteratively
  Min/Max game
  Sum of both players is zero

● Finding Nash equilibrium is hard
  Discriminator and generator need to have same quality

● Minimize Jensen-Shannon divergence (assume optimal discriminator)
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Optimal Evolution of GAN Training

Generated samples

Data samples

Discriminator

Generator

Epochs   

Gradient of discriminator guides generator
→ G generates samples which are more likely identified as data

Goodfellow et al.   -   arXiv:1406.2661
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Deep Convolutional GANs (DCGANs)

A. Radford, L. Metz, S. Chintala - https://arxiv.org/abs/1511.06434 

• DCGANs (Deep Convolutional GANs) show improved stability

• Use deep convolutional generator and discriminator:
I.  Use batch normalization
II. Remove fully connected hidden layers
III.Use ReLU in the generator
IV.Use LeakyReLU in the discriminator
V. Use special generator topology
• Use transposed convolutions

LeakyReLU
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HANDS ON I
● Train GAN on CIFAR10 data set

 Size: 32 x 32 x 3 (RGB)
 Holding 10 classes

Generate new
samples
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Latest developments & advanced techniques

● Understanding GAN training
 Training issues

● Wasserstein GANs
● Spectral normalization
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Results

Iterations

L
o

ss

     Epochs 
0 1 3 9

MNIST
CIFAR 10
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●  GANs are hard to train → Nash equilibrium
 generator         discriminator

●  Loss is hard to interpret (depends on discriminator)
 no correlation with image quality

● Strong discriminator → vanishing gradients
➢ Best: generator and discriminator on same scale

 Inexact noisy training→Rarely converging framework

Interpreting the Adversarial Loss
Too strong 
Discriminator

Data samples

Noisy 
Discriminator

Emanuele Sansone: Tutorial on Generative Adversarial Networks (GANs) - GitHub 

Data samples

| Part 10: Advanced GAN Techniques & Application in Particle Physics
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Problem: GANs often suffer from mode collapsing
● Many                 collapse towards restricted space in 

 Generator produce samples of a limited phase space
 Example: generate only digits 1 and 8

● Discriminator feedback is insensitive to complete phase-space
 Will focus on point(s) of phase space the generator do not cover

● Discriminator will push generator to this mode → cycling behavior

● Need different (softer) metric to address these issues!

Mode Collapsing - Helvetica Scenario
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Distribution Similarity - Metrics
● Kullback-Leibler divergence

✗ Not finite, not symmetric

● Jensen-Shannon divergence

✔ Symmetric

● Wasserstein distance
✔ Symmetric
✔ Meaningful distance measure for disjoint distributions

In GAN training we are dealing with disjoint distributions!

For disjoint distributions:
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● Earth Mover’s distance (EMD) provides meaning full feedback for disjoint settings

● Describes minimal cost to move distribution       on       and vice versa
  Cost: mass * distance

Traveling distance

Transportation plans

Ensures smallest cost

Wasserstein Distance

● Wasserstein distance
✔ Symmetric
✔ Ensures meaningful distance for disjoint distributions
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● Use Kantorovich-Rubinstein duality to estimate Wasserstein distance

●      = neural network (discriminator → critic)
● Neural network carries the Lipschitz continuity constraint
➢ Critic network estimate Wasserstein distance between

generate and real samples

Real samples Generated samples

Discriminator Critic 

The WGAN Concept

Slope everywhere less equal 1!

1-Lipschitz functions
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● Implement Lipschitz constraint
➢ Build up space for meaningful discriminator feedback
●  Without Lipschitz constrain

  Critic will not converge → No Wasserstein!

Extend objective with additional term:
  Penalize gradients being different from 1

● Sample gradients along line between event mixture 

Gradient Penalty

Value surfaces of critic

Value surfaces of critic

Targets

Targets

hyperparameter
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Conditioning of GANs
• Constrain generator to learn conditional probability distribution

 Reduce complexity of latent space, allow for interpretations
➢ Feed generator and discriminator additional informations (e.g. class labels: dog)

 Force generated samples show specific characteristics (label dependencies)
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HANDS ON II
● Train conditioned WGAN on CIFAR10 data set

 Size: 32 x 32 x 3 (RGB)

Generate new
samples
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Results
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● WGAN generates images 
with much better quality

● Critic loss converges
● Loss correlates with 

images quality

Wasserstein GANs
● Allow stable training of GANs

 Train critic to convergence
➢ Precise feedback for generator

● Prevent mode collapsing
● Provide meaningful loss 

Critic loss
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Spectral Normalization for GANs
● Gradient penalty / regularization is most important for training GANs!
● WGAN-GP is state of the art → Gradient “normalization” (penalty)

 Also standard GAN with gradient penalty performance well!
 Training can be slow because of many critic iterations

● Adapt Lipschitz constraint using different normalization strategy
 Normalize weights using spectral norm (fast approximation)

● GAN training:
 Speed up
 Increased stability (high learning rates, high momentum rates)
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Spectral Normalization
● Spectral norm: “natürliche Matrixnorm”

● Maximum stretch factor of unit vector 
after multiplication with matrix

●       = highest singular value (“Singulärwert”)
of the matrix 
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Spectral Normalization for GANs
●          = discriminator
● Adapt WGAN-GP constraint (gradient wrt.     real and fake samples)

 Use spectral normalization in each layer!

● Basic idea:

➢ Cover Lipschitz constraint by normalizing the weights

● Gradient update:
 Gradient penalizes updates in direction of highest singular value (in each layer)
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Generate Air Shower Footprints
● Measurement of cosmic ray induced air showers
● Pierre Auger Observatory: Fluorescence (FD) and Surface Detector (SD)

 FD: Telescopes measure light of excited nitrogen
 SD: Water Cherenkov stations detect passage of charged particles
 Simulation: 2D image sequence, Cartesian grid, 1-100 EeV protons
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Results

Generated footprints during training
Quick physics cross checks
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Calorimeter Images
● Spectral normalization and gradient penalty enforces Lipschitz constrain 

differently
➢Combine both techniques
• Further apply spectral normalization in the generator

Generate Calorimeter Images
• 100 GeV electron beam, generated by T. Quast using GEANT4
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Outlook
● Model architectures and hyperparameters still need to be tuned for each task
● Tips / Tricks

 Never use vanilla GANs!
 Follow DCGAN “guidelines”
 Preprocess your data
 Use label conditioning
 Use deep models

● There is much more going on→stay tuned
 Cycle GANs
 Progressive growing of GANs

Yang, Chou, Yang - https://arxiv.org/abs/1703.10847
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References & Further Reading

● Goodfellow et al.: Generative Adversarial Networks - https://arxiv.org/abs/1406.2661
● Arjovsky, Chintala, Bottou: Wasserstein GANs -  https://arxiv.org/abs/1701.07875
● Gulrajani et al.: WGAN-GP - https://arxiv.org/abs/1704.00028
● Paganini, Oliveira, Nachman: CaloGAN - https://arxiv.org/abs/1712.10321
● Erdmann, Geiger, Glombitza, Schmidt: Refiner - https://arxiv.org/abs/1802.03325
● Emanuele Sansone - https://github.com/emsansone/GAN
● Erdmann, Glombitza, Quast: Calorimeter WGAN - https://arxiv.org/abs/1807.01954
● Karras, Aila, Laine, Lehtinen: ProGAN - https://arxiv.org/abs/1710.10196
● Arjovsky, Bottou - https://arxiv.org/abs/1701.04862
● Miyato, Kataoka, Koyama, Yoshida: SN-GAN - https://arxiv.org/abs/1802.05957
● Brock, Donahue, Simonyan: BigGANs - https://arxiv.org/abs/1809.11096
●
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https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1712.10321
https://arxiv.org/abs/1802.03325
https://github.com/emsansone/GAN
https://arxiv.org/abs/1807.01954
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1701.04862
https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/1809.11096
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Transposed Convolutions
● Think of process which turn around

the convolutional operation

● Convolution
 Map cluster to 1 pixel

● Transposed convolution
 Map 1 pixel to a cluster

Paul-Louis Pröve, 
Towards Data Science

Example
Transposed convolution, fractionally 
strided convolution or deconvolution
no padding, stride 2, kernel 3 x 3
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Non Saturation GAN (NS-GAN)
● Use label switching to avoid vanishing gradients in discriminator
● Standard loss: minimize

● But gradients vanish for                                   (good discriminator)
● Replace loss and minimize instead

 
New loss has strange update behavior:
➢ No vanishing gradient but instable updates → gradients Cauchy distributed

● Objective looks strange, subtraction of KL and JS
● This KL focus highly on generate fake images, low focus on mode dropping
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Distribution Similarity - Metrics
● Kullback-Leibler divergence

✗ Not finite
✗ Not symmetric

● Jensen-Shannon divergence

✔ Symmetric
✗ Fails to provide a meaningful value when two distributions are disjoint

● Wasserstein distance
✔ Symmetric
✔ Ensures meaningful distance for disjoint distributions
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➢ Only         provides meaningful distance 
measure even for disjoint distributions!

Parametrized approximationReal distribution

Distribution Similarity - Metrics
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Weight Clipping vs. WGAN-GP
● Weight Clipping:

 Constraints the weights to lie on 
a compact space

  Clip weights after each gradient 
update eg. to [-0,001; 0,001]

● Heavily constraints the 
discriminator

● Gradient Penalty allows for a much 
more complex approximation

Weight clipping

Gradient 
Penalty
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